首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Chiral Near-Fields Induced by Plasmonic Chiral Conic Nanoshell Metallic Nanostructure for Sensitive Biomolecule Detection
【24h】

Chiral Near-Fields Induced by Plasmonic Chiral Conic Nanoshell Metallic Nanostructure for Sensitive Biomolecule Detection

机译:等粒细胞锥形纳米金属纳米结构诱导的手性近场,用于敏感的生物分子检测

获取原文
获取原文并翻译 | 示例
           

摘要

The complexity of lithography methods and other methods utilizing chiral templates to produce three-dimensional structures restricts further research on chiral plasmonics. Herein, a plasmonic nanostructure with a strong chiroptical response and enhanced near-fields generated on a large and highly ordered achiral tapered nanopore anodic aluminum oxide template is proposed and fabricated via a low-cost and efficient glancing angle deposition method. The plasmonic chiral conic nanoshell metallic nanostructure (CCNM), which is composed of three nanoshells of different heights, is obtained by varying the incidence and orientation angles of deposition to achieve symmetry breaking. Such a conic nanoshell nanostructure can couple incident light into the nanostructure, thus reducing the reflection and localizing the electromagnetic energy inside the nanoshell. The experimental circular dichroism spectra of the CCNM in the visible range shows that the chiroptical response is amplified with an increased height difference of the three nanoshells and period of the nanopore. The dissymmetry factor of the CCNM is up to 0.45, which results from the helix-like electron oscillation characteristics on the surface of the three nanoshells. The simulation result shows that the enhancement of the chiral near-fields of the CCNM reaches 155 times with respect to the circularly polarized light due to the small angle between electric and magnetic fields. The chiral signal is enhanced by about 2 orders of magnitude using the CCNM to detect chiral molecules. This study offers a concise and large-area regular method for fabricating plasmonic chiral nanostructures with a tunable chiroptical response and provides an effective and convenient idea to control the chiral near-fields for sensitive biomolecule detection.
机译:使用手性模板产生三维结构的光刻方法和其他方法的复杂性限制了对手性血浆的进一步研究。在此,通过低成本和有效的透明角沉积方法提出并制造在大型和高度有序的成锥形纳米孔阳极氧化铝模板上产生具有强的阴压反应和增强近场的等离子体纳米结构。通过改变沉积的发生率和取向角度来实现由三个不同高度的三个不同高度的纳米圆盘组成的等离子体手性锥形纳米结构(CCNM)。这种圆锥纳米型纳米结构可以将入射光耦合到纳米结构中,从而减少了纳米孔内的反射并定位电磁能。可见范围中CCNM的实验圆形二色体光谱表明,在纳米孔和纳米孔的三个纳米圆盘和周期的高度差异增加的情况下扩增了阴道反应。 CCNM的不对称因子高达0.45,这是由三个纳米型表面的表面上的螺旋形电子振荡特性产生。仿真结果表明,由于电场和磁场之间的小角度,CCNM的手性近场的增强达到了圆偏振光的155倍。使用CCNM以检测手性分子,手性信号通过约2个数量级增强。本研究提供了一种简明和大型常规方法,用于制造具有可调谐的阴光响应的等离子体手性纳米结构,并提供有效而方便的想法,以控制敏感生物分子检测的手性近场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号