...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Dynamical Transitions of Supercooled Water in Graphene Oxide Nanopores: Influence of Surface Hydrophilicity
【24h】

Dynamical Transitions of Supercooled Water in Graphene Oxide Nanopores: Influence of Surface Hydrophilicity

机译:石墨烯纳米孔过冷水的动力转变:表面亲水性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular dynamics simulations are carried out to explore the dynamical crossover phenomenon in strongly confined and mildly supercooled water in graphene oxide nanopores. Since the extent of hydrophilicity can be varied on graphene oxide surfaces, they offer energetically heterogeneous environments that can potentially modulate the rotational and translational relaxation dynamics of confined water. The influence of the physicochemical nature of the graphene oxide surface on the dynamical transitions is investigated by varying the extent of hydrophobicity on the confining surfaces placed at an intersurface separation of 10 angstrom. Water forms two distinct layers in contact with the graphene oxide surface at this separation. All dynamical quantities show a typical slowing down as the temperature is lowered from 298 to 200 K; however, the nature of the transition is a distinct function of the surface type. Water confined between surfaces consisting of alternating hydrophilic and hydrophobic regions exhibit a strong-to-strong dynamical transition in the diffusion coefficients and rotational relaxation times at a crossover temperature of 237 K and show a fragile-to-strong transition in the alpha-relaxation time at 238 K. The observed crossover temperature is higher than the freezing point of the SPC/E water model used in this study, indicating that these dynamical transitions can occur with mild supercooling under strong confinement in the absence of bulk-like water. In contrast, water confined in a hydrophilic nanopore shows a single Arrhenius energy barrier over the entire temperature range. Our results indicate that in addition to confinement, the nature of the surface can play a critical role in determining the dynamical transitions for water upon supercooling.
机译:进行分子动力学模拟,以探讨石墨烯氧化物纳米孔中强狭窄和温和过冷水中的动态交叉现象。由于亲水性可以在石墨烯氧化物表面上变化,因此它们提供了能量的异构环境,可以潜在地调节限制水的旋转和平移放松动态。通过改变放置在10埃的内表面分离的限制表面上的疏水程度,研究了石墨烯氧化物表面对动力转变对动力转变的影响。水形成两个与石墨烯氧化物表面接触的不同层。所有动力量都显示出典型的减速,随着温度从298降至200 k;然而,过渡的性质是表面类型的独特功能。由交替亲水和疏水区域组成的表面之间限制的水在扩散系数中表现出强大的动态转变,并在237k的交叉温度下旋转弛豫时间,并在α-松弛时间显示出脆弱的转变在238 k下,观察到的交叉温度高于本研究中使用的SPC / E水模型的冷冻点,表明这些动态转变可以在不存在散装水的情况下在强大的限制下用温和的过冷发生。相反,在亲水性纳米孔中限制的水在整个温度范围内显示出单个Arrhenius能量屏障。我们的结果表明,除了限制之外,表面的性质还可以在确定过冷却时测定水的动态转变来发挥关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号