首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation
【24h】

Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation

机译:异戊二烯和甲基丙烯氧化的二次有机气溶胶的云加工

获取原文
获取原文并翻译 | 示例
           

摘要

Aerosol-cloud interaction contributes to the largest uncertainties in the estimation and interpretation of the Earth's changing energy budget. The present study explores experimentally the impacts of water condensation-evaporation events, mimicking processes occurring, in atmospheric clouds, on the molecular composition of secondary organic aerosol (SOA) from the photooxidation of methacrolein. A range of on and off-line mass spectrometry techniques were used to obtain a detailed chemical characterization of SOA formed in control experiments in dry conditions, in triphasic experiments simulating gas-particle-cloud droplet interactions (starting from dry conditions and from 60% relative humidity (RH)), and in bulk aqueous-phase experiments. We observed that cloud events trigger fast SOA formation accompanied by evaporative losses. These evaporative losses decreased SOA concentration in the simulation chamber by 25-32% upon RH increase, while aqueous SOA was found to be metastable and slowly evaporated after cloud dissipation. In the simulation chamber, SOA composition measured with a high-resolution time-of flight aerosol mass spectrometer, did not change during cloud events compared with high RH conditions (RH > 80%). In all experiments, off-line mass spectrometry techniques emphasize the critical role of 2-methylglyceric acid as a major product of isoprene chemistry, as an important contributor to the total SOA mass (15-20%) and as a key building block of oligomers found in the particulate phase. Interestingly, the comparison between the series of oligomers obtained from experiments performed under different conditions show a markedly different reactivity. In particular, long reaction times at high RH seem to create the conditions for aqueous-phase processing to occur in a more efficient manner than during two relatively short cloud events.
机译:气溶胶云互动有助于估计和解释地球变化能源预算的最大不确定性。本研究探讨了实验探讨了水凝结蒸发事件的影响,在大气云中,在大气覆盖中,在来自甲基丙醇的光氧化的次级有机气溶胶(SOA)的分子组合物中发生的过程。使用一系列的开线和离线质谱技术来获得在干燥条件下的对照实验中形成的SOA的详细化学表征,在三种阶段实验中模拟气体粒子云液滴相互作用(从干燥条件和60%相对湿度(RH)),以及批量水相实验。我们观察到云事件触发快速的SOA形成伴随着蒸发损失。这些蒸发损失在慢速增加时将模拟室中的SOA浓度降低25-32%,而在云耗散后,发现含水SOA是稳定的并且缓慢蒸发。在仿真室中,用高分辨率飞行时间气溶胶质谱仪测量的SOA组成,与高Rh条件(RH> 80%)相比,在云事件中没有改变。在所有实验中,离线质谱技术强调2-甲基甘氨酸的关键作用作为异戊二烯化学的主要产物,作为总SOA质量(15-20%)的重要贡献者,作为低聚物的关键构建块发现在颗粒相中。有趣的是,在不同条件下进行的实验中获得的一系列低聚物之间的比较显示出明显不同的反应性。特别地,高RH的长反应时间似乎为水相处理产生的条件以比在相对短的云事件中更有效的方式发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号