首页> 外文期刊>The Journal of Chemical Physics >Density-functional theory study of the body-centered-cubic and cI16 hard-sphere crystals
【24h】

Density-functional theory study of the body-centered-cubic and cI16 hard-sphere crystals

机译:身体中心立方和CI16硬球晶体的密度功能理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

The properties of the body-centered-cubic (bcc) solid phase of hard spheres are challenging to compute because of its lack of mechanical and thermodynamic stability, yet this structure remains of interest for theoretical and practical reasons. Density-functional theory (DFT) studies of the bcc hard-sphere solid, using the most accurate functionals from fundamental measure theory, have yielded results with unphysical behaviors in structural and thermodynamic properties. We recently reported [Warshavsky et al., J. Chem. Phys. 148, 024502 (2018)] a Monte Carlo (MC) simulation study of hard spheres initiated in a bcc structure. We observed that such systems, even under constant-volume and single-occupancy-cell constraints, rapidly evolved into either a crystalline state with the cI16 structure or one of a few amorphous states. With these observations in mind, we revisited the DFT calculations of the bcc hard-sphere system by allowing for a bcc-to-cI16 structural transformation. Specifically, the free energy functional was minimized with respect to a density profile having two scalar parameters: the traditional alpha parameter characterizing the width of the Gaussian density distribution around each lattice site and a geometric parameter characterizing the bcc-to-cI16 structural transition. The numerical solutions were physically reasonable across the entire density range. At all densities above rho(sigma 3)(b) = 1.0, a cI16 structure had lower free energy than the corresponding perfect bcc structure. The degree of lattice distortion from bcc to cI16 increased with density up to the close-packing limit. Finally, the predicted values of the structural and thermodynamic properties were in excellent agreement with those extracted from our previous MC simulations. Published under license by AIP Publishing.
机译:由于其缺乏机械和热力学稳定性,因此硬球的固体立方(BCC)固相的性质是挑战,但由于其缺乏机械和热力学稳定性,但这种结构对于理论和实际原因,这种结构仍然感兴趣。使用来自基本措施理论的最精确的功能的BCC硬球固体的密度功能理论(DFT)研究在结构和热力学性质中产生了未经理行为的结果。我们最近报道了[Warshavsky等,J.Chem。物理。 148,024502(2018)]在BCC结构中发起硬球的蒙特卡罗(MC)模拟研究。我们观察到这种系统,即使在恒定体积和单占间电池约束下,也快速地演变成具有CI16结构的结晶状态或少数非晶态。考虑到这些观察,我们通过允许BCC-To-Ci16结构转换重新审视了BCC硬球系统的DFT计算。具体地,相对于具有两个标量参数的密度分布最小化自由能量功能:传统的α参数表征每个晶格位置周围的高斯密度分布的宽度和表征BCC-TO-C116结构转变的几何参数。数值溶液在整个密度范围内物理上合理。在rho(sigma 3)上方的所有密度(b)= 1.0时,Ci16结构的自由能量低于相应的完美BCC结构。来自BCC到CI16的晶格变形程度随着密度而增加到近距离填充限制。最后,结构和热力学性质的预测值与我们以前的MC模拟中提取的那些符合很好。通过AIP发布在许可证下发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号