首页> 外文期刊>The Journal of Chemical Physics >Analyses based on statistical thermodynamics for large difference between thermophilic rhodopsin and xanthorhodopsin in terms of thermostability
【24h】

Analyses based on statistical thermodynamics for large difference between thermophilic rhodopsin and xanthorhodopsin in terms of thermostability

机译:基于统计热力学对嗜热核苷酸和黄酮磷素的差异差异分析

获取原文
获取原文并翻译 | 示例
           

摘要

Although the two membrane proteins, thermophilic rhodopsin (TR) and xanthorhodopsin (XR), share a high similarity in aminoacid sequence and an almost indistinguishable three-dimensional structure, TR is much more thermostable than XR. This is counterintuitive also because TR possesses only a smaller number of intramolecular hydrogen bonds (HBs) than XR. Here we investigate physical origins of the remarkable difference between XR and TR in the stability. Our free-energy function (FEF) is improved so that not only the portion within the transmembrane (TM) region but also the extracellular and intracellular portions within the water-immersed (WI) regions can be considered in assessing the stability. The assessment is performed on the basis of the FEF change upon protein folding, which is calculated for the crystal structure of XR or TR. Since the energetics within the TM region is substantially different from that within the WI regions, we determine the TM and WI portions of XR or TR by analyzing the distribution of water molecules using all-atom molecular dynamics simulations. The energetic component of the FEF change consists of a decrease in energy arising from the formation of intramolecular HBs and an increase in energy caused by the break of protein-water HBs referred to as "energetic dehydration penalty." The entropic component is a gain of the translational, configurational entropies of hydrocarbon groups within the lipid bilayer and of water molecules. The entropic component is calculated using the integral equation theory combined with our morphometric approach. The energetic one is estimated by a simple but physically reasonable method. We show that TR is much more stable than XR for the following reasons: The decrease in energy within the TM region is larger, and the energetic dehydration penalty within the WI regions is smaller, leading to higher energetic stabilization, and tighter packing of side chains accompanying the association of seven helices confe
机译:虽然两个膜蛋白质,嗜热核苷酸(Tr)和Xr)和XR),在氨基酸序列中占据高相似性,但TR的几乎不可区别的三维结构,TR比XR更热稳定。这也是违反直觉的,因为TR仅具有较少数量的分子内氢键(HBS)而不是XR。在这里,我们研究了稳定性XR和TR之间显着差异的物理来源。我们的自由能功能(FEF)得到改善,因此不仅可以考虑在评估稳定性时考虑跨膜(TM)区域内的部分而且可以在水浸(WI)区内的细胞外和细胞内部分。基于蛋白质折叠对蛋白质折叠的FEF变化进行评估,这是针对XR或TR的晶体结构计算的。由于TM区域内的能量与Wi区内的能量基本不同,因此通过使用全原子分子动力学模拟分析水分子的分布来确定XR或Tr的TM和Wi部分。 FEF变化的能量成分包括从形成分子内HBS形成的能量降低,并且由蛋白质 - 水HBS被称为“能量脱水刑罚”的突破引起的能量增加。熵组分是脂质双层和水分子内的烃基的平移,配置熵的增益。使用整体方程理论与我们的形态学方法相结合计算熵分量。精力充沛的是通过简单而是物理合理的方法估算。我们表明TR比XR更稳定,原因如下:TM区域内的能量降低更大,而Wi区内的能量脱水罚分较小,导致高度充电能稳定,侧链的更严格填充伴随着七螺旋联合的协会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号