首页> 外文期刊>The Journal of Chemical Physics >Equation of state and force fields for Feynman-Hibbs-corrected Mie fluids. I. Application to pure helium, neon, hydrogen, and deuterium
【24h】

Equation of state and force fields for Feynman-Hibbs-corrected Mie fluids. I. Application to pure helium, neon, hydrogen, and deuterium

机译:Feynman-Hibbs矫正MIE流体的状态和力领域方程。 I.应用于纯氦气,霓虹,氢气和氘

获取原文
获取原文并翻译 | 示例
           

摘要

We present a perturbation theory that combines the use of a third-order Barker-Henderson expansion of the Helmholtz energy with Mie-potentials that include first- (Mie-FH1) and second-order (Mie-FH2) Feynman-Hibbs quantum corrections. The resulting equation of state, the statistical associating fluid theory for Mie potentials of variable range corrected for quantum effects (SAFT-VRQ-Mie), is compared to molecular simulations and is seen to reproduce the thermodynamic properties of generic Mie-FH1 and Mie-FH2 fluids accurately. SAFT-VRQ Mie is exploited to obtain optimal parameters for the intermolecular potentials of neon, helium, deuterium, ortho-, para-, and normal-hydrogen for the Mie-FH1 and Mie-FH2 formulations. For helium, hydrogen, and deuterium, the use of either the first- or second-order corrections yields significantly higher accuracy in the representation of supercritical densities, heat capacities, and speed of sounds when compared to classical Mie fluids, although the Mie-FH2 is slightly more accurate than Mie-FH1 for supercritical properties. The Mie-FH1 potential is recommended for most of the fluids since it yields a more accurate representation of the pure-component phase equilibria and extrapolates better to low temperatures. Notwithstanding, for helium, where the quantum effects are largest, we find that none of the potentials give an accurate representation of the entire phase envelope, and its thermodynamic properties are represented accurately only at temperatures above 20 K. Overall, supercritical heat capacities are well represented, with some deviations from experiments seen in the liquid phase region for helium and hydrogen. Published under license by AIP Publishing.
机译:我们提出了一种扰动理论,将三阶Barker-Henderson扩展与包括First-(Mie-FH1)和二阶(MIE-FH2)Feynman-Hibbs量子校正的MIE-POSILATIONS的使用相结合使用了三阶Barker-Henderson扩展。得到的状态方程,对量子效应的可变范围的MIE电位统计关联流体理论(Saft-VRQ-mie)与分子模拟进行比较,并且被认为是普通MIE-FH1和MIE的热力学性质FH2流体精确。利用SAFT-VRQ MIE以获得MIE-FH1和MIE-FH2制剂的氖,氦,氘,官能,术的分子间电位的最佳参数。对于氦,氢和氘,与古典mie液体相比,使用第一或二阶校正的使用显着提高了超临界密度,热容量和声音速度的准确性。虽然MIE-FH2对于超临界特性,比MIE-FH1稍微精确。对于大多数流体建议MIE-FH1电位,因为它产生更精确的纯组分相平衡的表示,并更好地推断到低温。对于氦气来说,在量子效应最大的情况下,我们发现没有任何电位可以精确地表示整个相封套,并且其热力学性能仅在20 k的温度下精确地表示。总体而言,超临界热量很好代表,偏离氦和氢气中的液相区域中观察的一些偏差。通过AIP发布在许可证下发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号