首页> 外文期刊>The Journal of Chemical Physics >Structure formation and surface chemistry of ionic liquids on model electrode surfaces-Model studies for the electrode vertical bar electrolyte interface in Li-ion batteries
【24h】

Structure formation and surface chemistry of ionic liquids on model electrode surfaces-Model studies for the electrode vertical bar electrolyte interface in Li-ion batteries

机译:锂离子电池电极垂直条电解质界面模型电极表面模型研究的结构形成及表面化学

获取原文
获取原文并翻译 | 示例
           

摘要

Ionic liquids (ILs) are considered as attractive electrolyte solvents in modern battery concepts such as Li-ion batteries. Herewepresent a comprehensive reviewof the results of previous model studies on the interaction of the battery relevant IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide ([BMP](+)[TFSI](-)) with a series of structurally and chemically well-defined model electrode surfaces, which are increasingly complex and relevant for battery applications [Ag(111), Au(111), Cu(111), pristine and lithiated highly oriented pyrolytic graphite (HOPG), and rutile TiO2(110)]. Combining surface science techniques such as high resolution scanning tunneling microscopy and X-ray photoelectron spectroscopy for characterizing surface structure and chemical composition in deposited (sub-) monolayer adlayers with dispersion corrected density functional theory based calculations, this work aims at a molecular scale understanding of the fundamental processes at the electrode vertical bar electrolyte interface, which are crucial for the development of the so-called solid electrolyte interphase (SEI) layer in batteries. Performed under idealized conditions, in an ultrahigh vacuum environment, these model studies provide detailed insights on the structure formation in the adlayer, the substrate-adsorbate and adsorbate-adsorbate interactions responsible for this, and the tendency for chemically induced decomposition of the IL. To mimic the situation in an electrolyte, we also investigated the interaction of adsorbed IL (sub-) monolayers with coadsorbed lithium. Even at 80 K, postdeposited Li is found to react with the IL, leading to decomposition products such as LiF, Li3N, Li2S, LixSOy, and Li2O. In the absence of a [BMP](+)[TFSI](-) adlayer, it tends to adsorb, dissolve, or intercalate into the substrate (metals, HOPG) or to react with the substrate (TiO2) above a critical temperature, forming LiOx and Ti3+ species in the latter case. Finally, the formation of
机译:离子液体(离子液体)被认为是在现代电池的概念,如锂离子电池有吸引力的电解质溶剂。 Herewepresent一个综合reviewof以前的模型的研究对电池的相互作用的结果有关的IL 1-丁基-1-甲基吡咯烷双(三氟甲基磺酰)亚胺([BMP](+)[TFSI]( - ))与一系列的结构上和化学定义良好的模型电极的表面,这对于电池的应用将[Ag(111),金(111),铜(111),原始日益复杂和相关和锂化的高定向热解石墨(HOPG),和金红石TiO2(110) ]。结合表面科学技术,例如高分辨率扫描隧道显微镜和X射线光电子能谱法在沉积(子)单层吸附层表面特征结构和化学组成与色散校正密度泛函理论基础计算,这一工作的目的是一个分子级理解在电极竖线电解质界面的基本过程,这对于在电池中的所谓的固体电解质界面(SEI)层的发展是至关重要的。理想化的条件下进行,在超高真空环境中,这些模型研究提供了在吸附层的结构形成详细的洞察,基板吸附物和负责该吸附物 - 吸附物的相互作用,以及用于IL的化学诱导分解的倾向。为了模拟在电解质的情况下,我们还研究了共吸附锂吸附IL(子)单层的相互作用。即使在80 K,postdeposited李被发现与IL反应,导致分解产物如LIF,氮化锂,Li2S,LixSOy和的Li2O。在不存在[BMP](+)[TFSI]的( - )吸附层,也容易吸附,溶解,或插入基底(金属,HOPG)或与基板(二氧化钛)到临界温度以上进行反应,形成在后一种情况下LIOX和Ti 3+的物种。最后,形成

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号