首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Optimization of parameters of micro-plasma transferred arc additive manufacturing process using real coded genetic algorithm
【24h】

Optimization of parameters of micro-plasma transferred arc additive manufacturing process using real coded genetic algorithm

机译:使用实际编码遗传算法优化微等离子体转移电弧添加剂制造工艺的参数

获取原文
获取原文并翻译 | 示例
       

摘要

Micro-plasma transferred arc additive manufacturing (mu-PTAAM) process developed at IIT Indore has proven be an energy and material efficient additive manufacturing process for various meso-scale ALM applications of high melting point metallic materials. This paper reports on optimization of three most important parameters (i.e. micro-plasma power, worktable travel rate and wire feed rate) of mu-PTAAM process by real coded genetic algorithms so as to minimize the aspect ratio (i.e. ratio of deposition width to deposition height) with an overall objective to increase productivity of this process. Objective function for aspect ratio was formulated using generic theoretical thermal developed in terms of mu-PTAAM process parameters and properties of the substrate and deposition material and models developed using regression analysis and artificial neural networks (ANN). It gave optimized values of micro-plasma power as 370, 355 and 360 W, respectively, by the thermal model, regression model and ANN model, and that of travel speed of worktable and wire feed rate as 100 mm/min and as 1700 mm/min by all three models. The optimized results were validated experimentally by depositing 0.3-mm diameter wire of P20 on 5-mm-thick substrate of the same material. The optimized values of the aspect ratio using objective function based generic thermal model, regression model and ANN model are 1.15, 1.31 and 1.36, respectively, with corresponding experimental values being 1.48, 1.5 and 1.48, respectively. Use of optimum process parameters resulted in very good quality and accuracy of the deposition which has excellent bonding with the substrate material and no internal defects.
机译:在IIT Indore开发的微等离子体转移的电弧添加剂制造(MU-PTAAM)工艺已被证明是一种能源和材料有效的高熔点金属材料的中型级ALM应用的能量和材料有效的添加剂制造工艺。本文通过实际编码的遗传算法优化MU-PTAAM工艺三种最重要的参数(即微等离子体电源,工作行程和送频率和送频率和送稿速率),以便最小化纵横比(即沉积宽度与沉积的比率高度)总体目的是提高该过程的生产力。使用在MU-PTAAM工艺参数和基板和沉积材料的性质和使用回归分析和人工神经网络开发的模型方面使用通用理论热量配制纵横比的目标函数。它分别通过热模型,回归模型和ANN模型提供了微等离子体功率为370,355和360W的优化值,以及工作可行的行进速度和100毫米/分钟和1700 mm的行程速度所有三种型号的/分钟。通过在相同材料的5mm厚的基板上沉积0.3mm直径的P20直径的P20,通过实验进行实验验证优化的结果。使用目标函数基于通用热模型,回归模型和ANN模型的宽高比的优化值分别为1.15,1.31和1.36,分别具有1.48,1.5和1.48的相应实验值。使用最佳工艺参数导致沉积的质量非常好,精度与基板材料具有优异的粘合,没有内部缺陷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号