首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process
【24h】

Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process

机译:用于在选择性激光熔化过程中确定具有高密度的零件的最佳处理参数的系统方法

获取原文
获取原文并翻译 | 示例
           

摘要

Relying on trial-and-error methods to determine the optimal processing parameters which maximize the density of parts produced using selective laser melting (SLM) technique is costly and time consuming. With a given SLM machine characteristics (e.g., laser power, scanning speed, laser spot size, and laser type), powder material, and powder size distribution, the present study proposes a more systematic strategy to reduce the time and cost in finding optimal parameters for producing high-density components. In the proposed approach, a circle packing design algorithm is employed to identify 48 representative combinations of the laser scanning speed and laser power for a commercial Nd:YAG SLM system. For each parameter combination, finite element heat transfer simulations are performed to calculate the melt pool dimensions and peak temperature for 316L stainless steel powder deposited on a 316L substrate. The simulated results are then used to train the artificial neural networks (ANNs). The trained ANNs are used to predict the melt pool dimensions and peak temperature for 3600 combinations of the laser power and laser speed in the design space. The resulting processing maps are then inspected to determine the particular parameter combinations which produce stable single scan tracks with good adhesion to the substrate and a peak temperature lower than the evaporation point of the SS 316L powder bed. Finally, the surface roughness measurements are employed to confirm the parameter settings which maximize the SLM component density. The experimental results show that the proposed approach results in a maximum component density of 99.97 %, an average component density of 99.89%, and a maximum standard deviation of 0.03%.
机译:依赖于试验和错误方法来确定最大化使用选择性激光熔化(SLM)技术产生的部件密度的最佳处理参数是昂贵且耗时的。通过给定的SLM机器特性(例如,激光功率,扫描速度,激光光斑尺寸和激光型),粉末材料和粉末尺寸分布,本研究提出了一种更系统的策略来减少找到最佳参数的时间和成本用于生产高密度组分。在所提出的方法中,采用圆包装设计算法来识别商业ND:YAG SLM系统的激光扫描速度和激光功率的48个代表性组合。对于每个参数组合,进行有限元传热模拟以计算沉积在316L底物上的316L不锈钢粉末的熔融池尺寸和峰值温度。然后使用模拟结果来训练人工神经网络(ANN)。培训的ANN用于预测设计空间中激光功率和激光速度的3600种组合的熔池尺寸和峰值温度。然后检查所得到的处理映射以确定产生稳定的单扫描轨道的特定参数组合,其与基板的良好粘附以及低于SS 316L粉末床的蒸发点的峰值温度。最后,采用表面粗糙度测量来确认最大化SLM分量密度的参数设置。实验结果表明,所提出的方法导致99.97%的最大的元件密度,99.89%的平均元件密度,和0.03%的最大标准偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号