...
首页> 外文期刊>Physics of plasmas >A universal theory for gas breakdown from microscale to the classical Paschen law
【24h】

A universal theory for gas breakdown from microscale to the classical Paschen law

机译:Microscale对古典帕森法的气体崩溃普遍理论

获取原文
获取原文并翻译 | 示例

摘要

While well established for larger gaps, Paschen's law (PL) fails to accurately predict breakdown for microscale gaps, where field emission becomes important. This deviation from PL is characterized by the absence of a minimum breakdown voltage as a function of the product of pressure and gap distance, which has been demonstrated analytically for microscale and smaller gaps with no secondary emission at atmospheric pressure [A. M. Loveless and A. L. Garner, IEEE Trans. Plasma Sci. 45, 574-583 (2017)]. We extend these previous results by deriving analytic expressions that incorporate the nonzero secondary emission coefficient, cSE, that are valid for gap distances larger than those at which quantum effects become important (similar to 100 nm) while remaining below those at which streamers arise. We demonstrate the validity of this model by benchmarking to particle-in-cell simulations with gamma(SE) = 0 and comparing numerical results to an experiment with argon, while additionally predicting a minimum voltage that was masked by fixing the gap pressure in previous analyses. Incorporating gamma(SE) demonstrates the smooth transition from field emission dominated breakdown to the classical PL once the combination of electric field, pressure, and gap distance satisfies the conventional criterion for the Townsend avalanche; however, such a condition generally requires supra-atmospheric pressures for breakdown at the microscale. Therefore, this study provides a single universal breakdown theory for any gas at any pressure dominated by field emission or Townsend avalanche to guide engineers in avoiding breakdown when designing microscale and larger devices, or inducing breakdown for generating microplasmas. Published by AIP Publishing.
机译:虽然为更大的差距建立得很好,但Paschen的法律(PL)未能准确地预测微观差距的故障,其中场发射变得重要。从PL的这种偏差是由于在压力和间隙距离的乘积的函数的函数的情况下缺乏最小击穿电压,这已经在大气压下显微镜和较小的间隙进行了分析进行了说明的,并且在大气压下没有二次发射[A. M.无爱和A. L. Garner,Ieee Trans。血浆SCI。 45,574-583(2017)]。我们通过推出包含非零二级发射系数CSE的分析表达式来扩展这些先前的结果,该表达式对于大于量子效应变得重要(类似于100nm)的间隙距离有效,同时剩下闻名的那些。我们通过与γ(SE)= 0的粒子内模拟来展示该模型的有效性,并将数值结果与氩气的实验进行比较,同时另外预测通过固定先前分析中的间隙压力来掩盖的最小电压。结合伽马(SE)展示了一旦​​电场,压力和间隙距离的组合满足了Townsend雪崩的传统标准,就伽马发射主导地分解到经典PL的平滑过渡。然而,这种条件通常需要在微尺寸下进行击穿的次级气压。因此,本研究为任何压力的任何气体提供了由现场发射或Townsend Avalanche的任何气体的单一通用击穿理论,以指导工程师在设计微尺度和更大的设备时避免故障,或者诱导产生微量化的故障。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号