...
首页> 外文期刊>Physics of plasmas >High-order two-fluid plasma solver for direct numerical simulations of plasma flows with full transport phenomena
【24h】

High-order two-fluid plasma solver for direct numerical simulations of plasma flows with full transport phenomena

机译:高阶二流体等离子求解器,用于直接数值模拟等离子体流量,具有全运输现象

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The two-fluid plasma equations for a single ion species, with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating terms, have been implemented in the CFDNS code and solved by using sixth-order non-dissipative compact finite differences for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales, while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. Non-dimensional analysis of the two-fluid plasma equations shows that, by varying the characteristic/background number density, length scale, temperature, and magnetic strength, the corresponding Hall, resistive, and ideal magnetohydrodynamic equations can be recovered as limiting cases. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows in different regimes have been validated against four canonical problems: Alfven and whistler dispersion relations, electromagnetic plasma shock, and magnetic reconnection. For all test cases, by using physical dissipation and diffusion, with negligible numerical dissipation/diffusion, fully converged Direct Numerical Simulation (DNS)-like solutions are obtained when the ion Reynolds number based on the grid size is smaller than a threshold value which is about 2.3 in this study. For the magnetic reconnection problem, the results show that the magnetic flux saturation time and value converge when the ion and magnetic Reynolds numbers are large enough. Thus, the DNS-like results become relevant to practical problems with much larger Reynolds numbers. Published under license by AIP Publishing.
机译:在CFDNS代码中实施了具有完全传输术语的单离子物种的两种流体等离子体方程,包括温度和磁场依赖性离子和电子粘性应力,摩擦阻力和欧姆加热术语。通过使用六阶非耗散紧凑型有限差,在几个不同的方案中的等离子体流动。为了能够充分解决所有动态相关的时间和长度尺度,同时保持计算可行性,已经制造了无限速度的光速和可忽略的电子惯性的假设。两种流体等离子体方程的非尺寸分析表明,通过改变特征/背景数密度,长度,温度和磁力强度,相应的展厅,电阻和理想的磁流动动力学方程可以作为限制性恢复。这种双流体等离子体求解器在不同制度中处理等离子体流动的准确性和稳健性已经验证了四个规范问题:Alfven和吹口哨色散关系,电磁等离子体冲击和磁性重新连接。对于所有测试用例,通过使用物理耗散和扩散,具有可忽略的数值耗散/扩散,当基于网格尺寸的离子雷诺数小于阈值时,获得完全融合的直接数值模拟(DNS) - 样溶液这项研究中约为2.3。对于磁重构问题,结果表明,当离子和磁雷诺数足够大时,磁通饱和时间和值会聚。因此,DNS样结果与具有更大雷诺数的实际问题相关。通过AIP发布在许可证下发布。

著录项

  • 来源
    《Physics of plasmas》 |2019年第1期|共19页
  • 作者

    Li Z.; Livescu D.;

  • 作者单位

    Texas A&

    M Univ Corpus Christi Dept Engn Corpus Christi TX 78412 USA;

    Los Alamos Natl Lab CCS 2 Los Alamos NM 87545 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号