首页> 外文期刊>Physical review, B >Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations
【24h】

Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

机译:包括通过voronoi曲面的机器学习能量的水晶结构属性

获取原文
获取原文并翻译 | 示例
           

摘要

While high-throughput density functional theory (DFT) has become a prevalent tool formaterials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.
机译:虽然高通量密度泛函理论(DFT)已成为普遍的工具形式的发现,但它受到相对较大的计算成本的限制。在本文中,我们使用高吞吐量计算的DFT数据探索,以创建更快,代理模型,可以用于指导新搜索的机器学习(ml)。我们的方法是通过使用决策树模型来映射DFT计算的形成焓到一组属性,这些属性由两个不同的类型组成:(i)元素属性的组成依赖属性(如在以前的DFT形成能量的ML模型中使用的组成依赖性属性) ,结合来自化合物晶体结构的Voronoi曲面细胞的(II)衍生的属性。使用此方法创建的ML模型具有一半的交叉验证误差和类似的培训和评估速度与Coulomb矩阵和部分径向分布函数方法创建的模型。对于从开放量子材料数据库(OQMD)采取的435 000个形成能量的数据集,我们的模型在交叉验证中实现了80 MeV / Atom的平均绝对误差,低于DFT计算和实验测量的形成之间的近似误差焓和低于训练集的平均绝对偏差的15%。我们还表明,我们的方法可以准确地估计训练集外部的材料的形成能量,并用于识别具有特别大的形成焓的材料。我们建议我们的模型可用于通过识别最有前途的材料与DFT几乎没有额外的计算成本来加速新材料的发现。

著录项

  • 来源
    《Physical review, B》 |2017年第2期|共12页
  • 作者单位

    Northwestern Univ Dept Mat Sci &

    Engn Evanston IL 60208 USA;

    Northwestern Univ Dept Elect Engn &

    Comp Sci Evanston IL 60208 USA;

    Northwestern Univ Dept Elect Engn &

    Comp Sci Evanston IL 60208 USA;

    Northwestern Univ Dept Mat Sci &

    Engn Evanston IL 60208 USA;

    Northwestern Univ Dept Elect Engn &

    Comp Sci Evanston IL 60208 USA;

    Northwestern Univ Dept Elect Engn &

    Comp Sci Evanston IL 60208 USA;

    Northwestern Univ Dept Mat Sci &

    Engn Evanston IL 60208 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 固体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号