...
首页> 外文期刊>Physical review, B >Plasmon-plasmon interactions supported by a one-dimensional plasmonic crystal: Rabi phase and generalized Rabi frequency
【24h】

Plasmon-plasmon interactions supported by a one-dimensional plasmonic crystal: Rabi phase and generalized Rabi frequency

机译:一维等级晶体支持的等离子体 - 等离子相互作用:Rabi相和广义Rabi频率

获取原文
获取原文并翻译 | 示例
           

摘要

Plasmon-plasmon interactions are key in controlling light at the nanoscale and in the development of high-performance plasmonic devices. Sophisticated design and efficient dynamic control of such devices requires a precise description of both spectral responses and ultrafast temporal dynamics in plasmon-plasmon coupling systems. Here, a microscopic model based on the Heisenberg-Langevin formalism is developed for generic plasmon-plasmon interacting systems. The validity of the model was experimentally supported by precisely reproducing the output spectra of interacting plasmons in a one-dimensional plasmonic crystal. We discussed the inheritance from an initial phase to the Rabi phase, which is accompanied by the vacuum fluctuations dephasing the incoherent coupling channel. We further derived the generalized Rabi frequency between two coupled plasmonic modes. We demonstrate that the interplay between the Rabi phase and the coupling-induced incoherent damping process modulates the ultrafast dynamics of the polariton modes, resulting in distinctly different spectral responses including the degeneracy and reversing in the polariton branches. Our model can be readily extended to any other bosonic coupling systems such as interacting nanoparticles and photonic/plasmonic cavities, thus holding great promise and potential applications in nanocircuits and cavity QED.
机译:等离子体相互作用是控制纳米级和高性能等离子体器件的光的光的关键。这种装置的复杂的设计和高效动态控制需要精确描述等离子体耦合系统中的光谱响应和超快时间动态。这里,开发了一种基于Heisenberg-Langevin形式主义的微观模型,用于通用等离子体等离子体相互作用系统。通过精确地再现在一维等离离子体晶体中的相互作用等离子体的输出光谱来实验地支持模型的有效性。我们讨论了从初始阶段到rabi相的遗传,其伴随着去除非相干耦合通道的真空波动。我们进一步推导出了两种耦合等离子体模式之间的广义Rabi频率。我们证明Rabi相和耦合诱导的相干阻尼工艺之间的相互作用调制了极性磁体模式的超快动态,导致包括退化的明显不同的光谱响应,并在极化子分支中逆转。我们的模型可以容易地扩展到任何其他振谐耦合系统,例如相互作用纳米颗粒和光子/等离子体腔,从而在纳米电路和腔QED中保持巨大的承诺和潜在应用。

著录项

  • 来源
    《Physical review, B》 |2020年第3期|共9页
  • 作者单位

    Sichuan Univ Coll Phys Chengdu 610064 Peoples R China;

    Sichuan Univ Coll Phys Chengdu 610064 Peoples R China;

    Sichuan Univ Coll Phys Chengdu 610064 Peoples R China;

    Carl von Ossietzky Univ Oldenburg Inst Phys D-26129 Oldenburg Germany;

    Nanjing Univ Ctr Adv Microstruct Coll Engn &

    Appl Sci &

    Collaborat Innovat Natl Lab Solid State Microstruct Nanjing 210093 Peoples R China;

    Carl von Ossietzky Univ Oldenburg Inst Phys D-26129 Oldenburg Germany;

    Sichuan Univ Coll Phys Chengdu 610064 Peoples R China;

    Carl von Ossietzky Univ Oldenburg Inst Phys D-26129 Oldenburg Germany;

    Sichuan Univ Coll Phys Chengdu 610064 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 固体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号