...
首页> 外文期刊>Physical review, B >Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction
【24h】

Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction

机译:在扫描隧道显微镜连接中通过多个氢分子增强了ag(111)上的超薄ZnO层的分辨率成像

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2-and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.
机译:已经发现扫描隧道显微镜(STM)结中的分子氢以增强STM成像的横向空间分辨率,称为扫描隧道氢显微镜(STHM)。在这里,我们向Ag(111)上外延生长的2和3-单层(ML)厚ZnO层的原子分辨率成像报告使用STHM。可以在相对较大的尖端获得增强的分辨率以使表面距离并解决了比2mL的3-mL厚ZnO的位错缺陷的更有缺陷的结构。为了阐明增强的成像机制,通过STM和原子力显微镜的组合研究了氢分子结(HMJ)的电力和力学性质。结果发现,HMJ在尖端中显示多个扭结特征,以对导电和频移曲线的表面距离依赖性,这在无氢结中不存在。基于一个简单的建模,我们提出了几个氢分子,并将分子的顺序挤出结合导致电导和频移曲线中的扭结特征。该模型还定性地再现了ZnO膜的增强型分辨率图像。

著录项

  • 来源
    《Physical review, B》 |2018年第19期|共6页
  • 作者单位

    Max Planck Gesell Fritz Haber Inst Dept Phys Chem Faradayweg 4-6 D-14195 Berlin Germany;

    Univ Tokyo Dept Adv Mat Sci Kashiwa Chiba 2778561 Japan;

    Univ Calif Los Angeles Dept Chem &

    Biochem Los Angeles CA 90095 USA;

    Max Planck Gesell Fritz Haber Inst Dept Phys Chem Faradayweg 4-6 D-14195 Berlin Germany;

    Max Planck Gesell Fritz Haber Inst Dept Phys Chem Faradayweg 4-6 D-14195 Berlin Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 固体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号