...
首页> 外文期刊>Physics of fluids >Numerical investigation of nanosecond pulsed plasma actuators for control of shock-wave/boundary-layer separation
【24h】

Numerical investigation of nanosecond pulsed plasma actuators for control of shock-wave/boundary-layer separation

机译:用于控制冲击波/边界层分离的纳秒脉冲等离子体致动器的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

This study numerically explores the flow physics associated with nanosecond pulsed plasma actuators that are designed to control shock-wave induced boundary-layer separation in a Mach 2.8 supersonic flow. By using two dielectric barrier surface discharge actuator configurations, parallel and canted with respect to the flow velocity vector, a previous experiment suggested that the actuator worked in two ways to influence the interaction: boundary layer heating and vorticity production. The heating effect was enhanced with the parallel electrode and made the boundary-layer separation stronger, while the canted electrode produced vorticity and suppressed the boundary-layer separation due to the momentum transfer from the core flow. Because the detailed physical processes are still unclear, in this paper a numerical investigation is undertaken with a large eddy simulation and an energy deposition model for the plasma actuation, in which the dielectric barrier discharge produced plasma is approximated as a high temperature region. The flow characteristics without the plasma actuation correspond to the experimental observation, indicating that the numerical method successfully resolves the shock-wave/boundary-layer interaction. With the plasma actuation, complete agreement between the experiment and calculation has not been obtained in the size of the shock-wave/boundary-layer interaction region. Nevertheless, as with the experiment, the calculation successfully demonstrates definite difference between the parallel and canted electrodes: the parallel electrode causes excess heating and increases the strength of the interaction, while the canted electrode leads to a reduction of the interaction strength, with a corresponding thinning of the boundary layer due to the momentum transfer. The counter flow created by the canted actuator plays an important role in the vortex generation, transferring momentum to the boundary layer and, consequently, mitigating the shock induced b
机译:该研究数值探索与纳秒脉冲等离子体致动器相关的流理物理,该致动器设计用于控制Mach 2.8超音速流动中的冲击波诱导的边界层分离。通过使用两个介电阻挡表面放电致动器配置,并对流速向量的平行和倾斜,先前的实验表明,致动器以两种方式工作以影响相互作用:边界层加热和涡流产生。通过平行电极增强加热效果,并使边界层分离更强,而倾斜电极产生涡流并抑制由于从芯流量的动量转移而抑制边界层分离。因为详细的物理过程尚不清楚,在本文中,具有对等离子体致动的大涡流模拟和能量沉积模型进行了数值研究,其中介电阻挡放电产生的等离子体近似为高温区域。没有等离子体致动的流动特性对应于实验观察,表明数值方法成功地解析了冲击波/边界层相互作用。随着等离子体致动,在冲击波/边界层相互作用区域的大小中尚未获得实验和计算之间的完整协议。然而,与实验一样,计算成功地证明了平行和倾斜电极之间的明确差异:平行电极会导致过量加热并增加相互作用的强度,而倾斜电极导致相互作用强度的减小,则相应的由于动量转移,边界层的变薄。由倾斜执行器产生的逆流在涡流生成中起重要作用,将动量转移到边界层,从而减轻休克诱导的b

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号