...
首页> 外文期刊>Physical Review, A >Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling
【24h】

Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling

机译:在存在旋转轨道耦合的情况下光学和Zeeman格子的动态定位

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The dynamic localization of a two-level atom in a periodic potential under the action of spin-orbit coupling and a weak harmonically varying linear force is studied. We consider optical and Zeeman potentials that are either in phase or out of phase in two spinor components, respectively. The expectation value for the position of the atom after one oscillation period of the linear force is recovered in authentic resonances or in pseudoresonances. The frequencies of the linear force corresponding to authentic resonances are determined by the band structure of the periodic potential and are affected by the spin-orbit coupling. The width or dispersion of the wave packet in authentic resonances is usually minimal. The frequencies corresponding to pseudoresonances do not depend on the type of potential and on the strength of the spin-orbit coupling, while the evolution of excitations at the corresponding frequencies is usually accompanied by significant dispersion. Pseudoresonances are determined by the initial phase of the linear force and by the quasimomentum of the wave packet. Due to the spinor nature of the system, the motion of the atom is accompanied by periodic, but not harmonic, spin oscillations. Under the action of spin-orbit coupling the oscillations of the wave packet can be nearly completely suppressed in optical lattices. Dynamic localization in Zeeman lattices is characterized by doubling of the resonant oscillation periods due to band crossing at the boundary of the Brillouin zone. We also show that higher harmonics in the Fourier expansion of the energy band lead to effective dispersion, which can be strong enough to prevent dynamic localization of the Bloch wave packet.
机译:研究了双层原子在旋转轨道耦合的作用下的周期性潜力中的动态定位和弱谐振线性力。我们认为光学和塞曼电位分别在两个旋转组件中的相位或异相。在线性力的一个振荡周期后,在正面的共振或假谐声中回收原子后的位置的预期值。对应于真实谐振的线性力的频率由周期性电位的带结构确定,并且受到旋转轨道耦合的影响。波分组在真实共振中的宽度或分散通常是最小的。对应于假谐波的频率不依赖于旋转轨道耦合的电位类型和旋转轨道耦合的强度,而相应频率的激发的进化通常伴随着显着的分散。假义由线性力的初始阶段和波包的Quasimentum确定。由于系统的旋转性质,原子的运动伴随着周期性,但不是谐波的旋转振荡。在旋转轨道耦合的动作下,波分组的振荡可以在光学格中几乎完全抑制。 Zeeman格子中的动态定位的特征在于由于在布里渊区的边界处穿过带引起的谐振振荡周期加倍。我们还表明,能带的傅里叶扩展中的较高谐波导致有效的色散,这可能足以防止Bloch波包的动态定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号