...
首页> 外文期刊>Physics Letters, A >Relevance of the weak equivalence principle and experiments to test it: Lessons from the past and improvements expected in space
【24h】

Relevance of the weak equivalence principle and experiments to test it: Lessons from the past and improvements expected in space

机译:与弱等效原则和实验测试的相关性:过去的过去和改进的经验教训

获取原文
获取原文并翻译 | 示例
           

摘要

Tests of the Weak Equivalence Principle (WEP) probe the foundations of physics. Ever since Galileo in the early 1600s, WEP tests have attracted some of the best experimentalists of any time. Progress has come in bursts, each stimulated by the introduction of a new technique: the torsion balance, signal modulation by Earth rotation, the rotating torsion balance. Tests for various materials in the field of the Earth and the Sun have found no violation to the level of about 1 part in 10(13). A different technique, Lunar Laser Ranging (LLR), has reached comparable precision. Today, both laboratory tests and LLR have reached a point when improving by a factor of 10 is extremely hard. The promise of another quantum leap in precision rests on experiments performed in low Earth orbit. The Microscope satellite, launched in April 2016 and currently taking data, aims to test WEP in the field of Earth to 10(-15), a 100-fold improvement possible thanks to a driving signal in orbit almost 500 times stronger than for torsion balances on ground. The 'Galileo Galilei' (GG) experiment, by combining the advantages of space with those of the rotating torsion balance, aims at a WEP test 100 times more precise than Microscope, to 10(-17). A quantitative comparison of the key issues in the two experiments is presented, along with recent experimental measurements relevant for GG. Early results from Microscope, reported at a conference in March 2017, show measurement performance close to the expectations and confirm the key role of rotation with the advantage (unique to space) of rotating the whole spacecraft. Any non-null result from Microscope would be a major discovery and call for urgent confirmation; with 100 times better precision GG could settle the matter and provide a deeper probe of the foundations of physics. (C) 2017 Elsevier B.V. All rights reserved.
机译:弱等效原理(WEP)的试验探测物理学的基础。自从伽利略在1600年代早期,WEP测试已经吸引了一些在任何时刻的最好的实验者。进展已经在脉冲串中,每个刺激通过引入新技术:扭秤,信号调制由地球自转,旋转扭秤。各种材料在地球和太阳的现场试验已经发现没有违反对约1份的在10(13)的水平。不同的技术,月球激光测距(LLR),已达到相当的精度。如今,无论是实验室测试和LLR已经达到了一个点由10倍提高时,非常辛苦。在低地球轨道进行精密休息另一个飞跃对实验的承诺。显微镜卫星,在2016年4月推出,目前服用的数据,目的是测试在WEP地球的字段10(-15),一个100倍的提高可能由于驱动信号在轨道比扭秤强几乎500倍在地上。在“伽利略”(GG)的实验中,通过空间的优点与所述旋转扭力平衡,目的在WEP测试100倍显微镜更精确的组合,以图10(-17)。在这两个实验中关键问题的量化对比呈现,与相关的GG最近的实验测量一起。从显微镜结果早,在2017年三月的会议报告,显示测量性能接近预期和确认旋转与优势旋转整个飞船的关键作用(独特的空间)。从显微镜任何非空的结果将是迫切确认一重大发现和调用;用100倍的精度GG可以解决问题,并提供了物理学的基础有更深入的探测。 (c)2017年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号