首页> 外文期刊>Physical chemistry chemical physics: PCCP >Electronic structure calculations permit identification of the driving forces behind frequency shifts in transition metal monocarbonyls
【24h】

Electronic structure calculations permit identification of the driving forces behind frequency shifts in transition metal monocarbonyls

机译:电子结构计算允许识别过渡金属单羰基的频率偏移后面的驱动力

获取原文
获取原文并翻译 | 示例
           

摘要

We report the adiabatic energy decomposition analysis (EDA) of density functional theory (DFT) results, shedding light on the physical content of binding energies and carbon monoxide (CO) frequency (upsilon(CO)) shifts in select first-row transition metal monocarbonyls (MCOs; M = Ti-, V-, Cr-, Co-, Ni-, Cu-, V, Cr, Mn, Ni, Cu, Zn, Cr+, Mn+, Fe+, Cu+, and Zn+). This approach allows for the direct decomposition of upsilon(CO), in contrast to previous studies of these systems. Neutral, anionic, and cationic systems are compared, and our results indicate that the relative importance of electrostatic interactions, intramolecular orbital polarization, and charge transfer can vary significantly with the charge and electron configuration of the metal participating in binding. Various anomalous systems are also discussed and incorporated into a general model of MCO binding. Electrostatic interactions and orbital polarization are found to promote blue shifts in upsilon(CO), while charge transfer effects encourage upsilon(CO) red-shifting; previously reported values of upsilon(CO) are found to be a result of a complex but quantifiable interplay between these physical components. Our computations indicate that CuCO- and ZnCO possess triplet ground states, and also that CrCO- exhibits a non-linear geometry, all in contrast to previous computational results. Advantages and limitations of this model as an approximation to more complicated systems, like those implicated in heterogeneous catalysis, are discussed. We also report benchmark results for MCO geometries, binding energies, and harmonic CO frequencies, and discuss the validity of single-reference wave function and DFT approaches to the study of these transition metal systems.
机译:我们报告了密度泛函理论(DFT)结果的绝热能量分解分析(EDA),结合能量和一氧化碳(CO)频率的物理含量(Upsilon(CO))换档选择的第一行过渡金属甘油基(MCOS; M = Ti,V-,Cr-,CA-,Ni,Cu,V,Cr,Mn,Ni,Cu,Zn,Cr +,Mn +,Fe +,Cu +和Zn +)。与先前的这些系统的研究相比,这种方法允许Upsilon(CO)的直接分解。比较中性,阴离子和阳离子系统,我们的结果表明静电相互作用,分子内轨道极化和电荷转移的相对重要性可以随着参与结合的金属的电荷和电子构造而显着变化。还讨论了各种异常系统并将其结合到MCO结合的一般模型中。发现静电相互作用和轨道极化促进Upsilon(CO)的蓝色换档,而电荷转移效果促进Upsilon(CO)红移;先前报告的Upsilon(CO)的值被发现是这些物理组件之间复杂但可量化的相互作用的结果。我们的计算表明,Cuco-和Znco拥有三联地面状态,以及CRCo-展示了非线性几何形状,与先前的计算结果相比。讨论了这种模型的优点和局限作为更复杂的系统的近似,例如涉及在异构催化中的那些。我们还报告了MCO几何形状,绑定能量和谐波CO频率的基准结果,并讨论了对这些过渡金属系统的研究的单参考波函数和DFT方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号