首页> 外文期刊>Physical chemistry chemical physics: PCCP >Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model
【24h】

Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model

机译:原子电荷转移偏振偏振效应决定红外线碳氢化合物的强度:分子模型中原子的量子理论

获取原文
获取原文并翻译 | 示例
           

摘要

Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol~(-1) with a root mean square (rms) error of only 4.2 km mol~(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol~(-1), about ten times larger than the average charge contribution of 2.0 km mol~(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol~(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol~(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
机译:原子电荷转移 - 计数偏振效应决定了简单碳氢化合物,甲烷,乙烯,乙烷,丙酰基,环丙烷和苯乙烯的大部分红外基础Ch强度。分子/电荷 - 电荷通量 - 偶极磁通模型的量子原子理论预测了从0到123km mol〜(-1)的30 ch强度的值,其根均线(rms)误差仅为4.2 km mol〜 (-1)没有特定的平衡原子电荷术语。涉及电量通量和/或偶极焊剂的贡献的总和平均为20.3公里Mol〜(-1),大约比2.0 km mol〜(-1)的平均电荷贡献大约十倍。唯一值得注意的例外是乙炔的CH拉伸和弯曲强度,以及与SP杂交碳原子结合的氢的两个Pharyne振动。在四个量子水平,MP2 / 6-311 ++ G(3D,3P),MP2 / CC-PVTZ,QCISD / 6-311 ++ G(3D,3P)和QCISD / CC-PVTZ中进行计算。在QCISD级别计算的结果是4.7和5.0 km mol〜(-1)的四个具有4.7和5.0 km mol〜(-1)的最精确的速度,适用于6-311 ++ g(3D,3p)和CC-PVTZ基础组。这些值接近碳氢化合物强度的估计骨料实验误差,4.0 km mol〜(-1)。原子电荷转移 - 计数偏振效应远大于所有四个量子水平的结果的电荷效应。预计电荷转移偏振效应预计在更多极性分子的振动中也是重要的,其平衡电荷贡献可能很大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号