首页> 外文期刊>Physical chemistry chemical physics: PCCP >Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li1+xAlxTi2?x(PO4)3 (LATP)
【24h】

Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li1+xAlxTi2?x(PO4)3 (LATP)

机译:锂离子导电锂离子电解质Li1 + XalxTi2的Reaxff反应力场的研制α(PO4)3(Latp)

获取原文
获取原文并翻译 | 示例
           

摘要

We developed a ReaxFF reactive force field for NASICON-type Li _(1+ x ) Al _( x ) Ti _(2? x ) (PO _(4) ) _(3) (LATP) materials, which is a promising solid-electrolyte that may enable all-solid-state lithium-ion batteries. The force field parameters were optimized based on density functional theory (DFT) data, including equations of state and the heats of formation of ternary metal oxides and metal phosphate crystal phases ( e.g. , Li _( x ) TiO _(2) , Al _(2) TiO _(5) , LiAlO _(2) , AlPO _(4) , Li _(3) PO _(4) and LiTi _(2) (PO _(4) ) _(3) (LTP)), and the energy barriers for Li diffusion in TiO _(2) and LTP via vacancies and interstitial sites. Using ReaxFF, the structural and the energetic features of LATP were described properly across various compositions – Li occupies more preferentially the interstitial site next to Al than next to Ti. Also, as observed in experimental data, the lattice parameters decrease when Ti is partly substituted by Al because of the smaller size of the Al cation. Using this force field, the diffusion mechanism and the ionic conductivity of Li in LTP and LATP were investigated at T = 300–1100 K. Low ionic conductivity (5.9 × 10 ~(?5) S cm ~(?1) at 300 K) was obtained in LTP as previously reported. In LATP at x = 0.2, the ionic conductivity was slightly improved (8.4 × 10 ~(?5) S cm ~(?1) ), but it is still below the experimental value, which is on the order of 10 ~(?4) to 10 ~(?3) S cm ~(?1) at x = 0.3–0.5. At higher x (higher Al composition), LATP has a configurational diversity due to the Al substitution and the concomitant insertion of Li. By performing a hybrid MC/MD simulation for LATP at x = 0.5, a thermodynamically stable LATP configuration was obtained. The ionic conductivity of this LATP configuration was calculated to be 7.4 × 10 ~(?4) S cm ~(?1) at 300 K, which is one order of magnitude higher than the ionic conductivity for LTP and LATP at x = 0.2. This value is in good agreement with our experimental value (2.5 × 10 ~(?4) S cm ~(?1) at 300 K) and the literature values. The composition-dependent ionic conductivity of LATP was successfully demonstrated using the ReaxFF reactive force field, verifying the applicability of the LATP force field for the understanding of Li diffusion and the design of highly Li ion conductive solid electrolytes. Furthermore, our results also demonstrate the feasibility of the MC/MD method in modeling LATP configuration, and provide compelling evidence for the solid solution sensitivity on ionic conductivity.
机译:我们开发了一种用于Nasicon型Li _(1+ x)Al _(x)Ti _(2≤x)(Po _(4))_(3)(Latp)材料的Reaxff反应力领域,这是一个有前途的固体电解质,可实现全固态锂离子电池。基于密度泛函理论(DFT)数据进行优化力场参数,包括状态方程和三元金属氧化物的形成和金属磷酸盐晶体相的阶段(例如,Li _(x)TiO _(2),Al _ (2)TiO_(5),LiAlo _(2),ALPO _(4),LI _(3)PO _(4)和LITI _(2)(PO _(4))_(3)(LTP )),并且通过空位和间隙位点在TiO _(2)和LTP中的Li扩散能量屏障。使用Reaxff,在各种组合物中适当地描述了LatP的结构和能量特征 - Li更优先占据Al旁边的间隙位点而不是Ti。此外,如在实验数据中所观察到的,由于Al阳离子的尺寸较小,Ti部分被Al部分被Al部分取代时,晶格参数降低。使用该力场,在T = 300-1100k中研究了LIP和LATP中Li的扩散机制和离子电导率。低离子电导率(5.9×10〜(Δ5)Scm〜(α1),300 k如前所述,在LTP中获得。在X = 0.2的Latp中,离子电导率略微改善(8.4×10〜(?5)Scm〜(?1)),但它仍然低于实验值,大约10〜(? 4)在x = 0.3-0.5时至10〜(α3)cm〜(α1)。在较高的X(较高的Al组合物)中,Latp由于Al替代而具有配置的分集和锂的伴随插入Li。通过在X = 0.5处对LATP进行混合MC / MD仿真,获得了热力学稳定的LATP配置。将该LATP构造的离子电导率计算为300k的7.4×10〜(α4)Cm〜(α1),其比LTP和LATP在X = 0.2处的离子电导率高一阶数。该值与我们的实验值(2.5×10〜(?4)Cm〜(α1)为300 k)和文献值良好。使用Reaxff反应力场成功地证明了LATP的组成依赖性离子电导率,验证了LATP力场的适用性,以了解LI扩散和高度锂离子导电固体电解质的设计。此外,我们的结果还证明了MC / MD方法在建模LATP配置中的可行性,并为离子电导率的固体溶液敏感性提供了令人信服的证据。

著录项

  • 来源
  • 作者单位

    Department of Mechanical and Nuclear Engineering Pennsylvania State University;

    Department of Mechanical and Nuclear Engineering Pennsylvania State University;

    Department of Mechanical and Nuclear Engineering Pennsylvania State University;

    Department of Chemical Engineering Pennsylvania State University;

    Department of Materials Science and Engineering Materials Research Institute Pennsylvania State University;

    Department of Materials Science and Engineering Materials Research Institute Pennsylvania State University;

    Department of Mechanical and Nuclear Engineering Pennsylvania State University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号