...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Microstructure evolution and kinetics of B-site nanoparticle exsolution from an A-site-deficient perovskite surface: a phase-field modeling and simulation study
【24h】

Microstructure evolution and kinetics of B-site nanoparticle exsolution from an A-site-deficient perovskite surface: a phase-field modeling and simulation study

机译:a - 位点缺乏钙钛矿表面B-位点纳米粒子灭菌的微观结构演化与动力学:基础建模与仿真研究

获取原文
获取原文并翻译 | 示例

摘要

Segregation-exsolution of B-site catalytic dopants as nanoparticles from A-site-deficient perovskite (A1 xBO3 d) surfaces has been actively used in recent years to promote the activity and durability of perovskite oxides towards efficient fuel oxidation and water splitting. The mechanistic understandings are currently gained from equilibrium thermodynamics, such as atomic scale density functional theory calculations, in terms of segregation energy, interaction energy and elastic energy. Herein, we have developed a micro-scale phase-field model framework that describes the kinetics and microstructure evolutions of the B-site segregation and nanoparticle exsolution from the A1 xBO3 d surface. The model was derived in a thermodynamically consistent manner by employing a ternary regular-solution freeenergy functional and Cahn-Hilliard kinetic equations. The key hypothesis is that the B-site nanoparticle is exsolved by a spinodal decomposition once the surface region of A1 xBO3 d is driven to the spinodal region of the free-energy functional via B-site segregation to the surface and/or via expansion of the chemical spinodal region. The effects of oxygen partial pressure (or electric polarization), B-site supersaturation (or A-site deficiency), and segregation energy have been explicitly investigated, and the results obtained agree qualitatively with the experimental observations. The proposed model can serve as a multi-scale bridge that ties the atomic-scale understandings to the micro-scale observations and has the potential to be used for the design and optimization of nano-architectures of A1 xBO3 d materials.
机译:近年来,在近年来,近年来,近年来,近年来,B-Site催化掺杂剂作为来自A-Site缺陷的钙钛矿(A1 XbO 3 D)表面的纳米颗粒的偏移。根据偏析能量,相互作用和弹性能量,机械理论从均衡热力学,例如原子尺度密度泛函理论计算中获得。在此,我们开发了一种微级相场模型框架,其描述了来自A1 XbO 3 D表面的B位分离和纳米粒子灭绝的动力学和微观结构演进。该模型通过使用三元常规溶液自由化功能和Cahn-Hilliard动力学方程以热力学一致的方式衍生。关键假设是通过通过B位点偏析向表面和/或通过膨胀被驱动到自由能官能团的尖晶板区域的旋膜分解,通过旋床分解来渗透Baite纳米粒子。化学特色区域。已经明确研究了氧分压(或电极化),B位过饱和度(或缺乏)和分离能量的影响,并且获得的结果与实验观察结果同意。所提出的模型可以用作多尺度桥梁,将原子尺度谅解介绍对微尺度观察,并且具有用于A1 XBO3 D材料的纳米体系结构的设计和优化的可能性。

著录项

  • 来源
  • 作者单位

    Harbin Inst Technol Sch Mat Sci &

    Engn Natl Key Lab Precis Hot Proc Met MIIT Key Lab Adv Struct Funct Integrated Mat &

    Gr Harbin 150001 Heilongjiang Peoples R China;

    Harbin Inst Technol Sch Mat Sci &

    Engn Natl Key Lab Precis Hot Proc Met MIIT Key Lab Adv Struct Funct Integrated Mat &

    Gr Harbin 150001 Heilongjiang Peoples R China;

    Harbin Inst Technol Sch Mat Sci &

    Engn Natl Key Lab Precis Hot Proc Met MIIT Key Lab Adv Struct Funct Integrated Mat &

    Gr Harbin 150001 Heilongjiang Peoples R China;

    Harbin Inst Technol Sch Mat Sci &

    Engn Natl Key Lab Precis Hot Proc Met MIIT Key Lab Adv Struct Funct Integrated Mat &

    Gr Harbin 150001 Heilongjiang Peoples R China;

    Harbin Inst Technol Sch Mat Sci &

    Engn Natl Key Lab Precis Hot Proc Met MIIT Key Lab Adv Struct Funct Integrated Mat &

    Gr Harbin 150001 Heilongjiang Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学 ; 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号