...
首页> 外文期刊>Physics in medicine and biology. >Accounting for respiratory motion in small serial structures during radiotherapy planning: Proof of concept in virtual bronchoscopy-guided lung functional avoidance radiotherapy
【24h】

Accounting for respiratory motion in small serial structures during radiotherapy planning: Proof of concept in virtual bronchoscopy-guided lung functional avoidance radiotherapy

机译:放射疗法规划中小序列结构中呼吸运动的核算:虚拟支气管镜引导肺功能避免放射疗法概念证明

获取原文
获取原文并翻译 | 示例

摘要

ABSTRACT: Respiratory motion management techniques in radiotherapy (RT) planning are primarily focused on maintaining tumor target coverage. An inadequately addressed need is accounting for motion in dosimetric estimations in smaller serial structures. Accurate dose estimations in such structures are more sensitive to motion because respiration can cause them to move completely in or out of a high dose-gradient field. In this work, we study three motion management strategies (m1-m3) to find an accurate method to estimate the dosimetry in airways. To validate these methods, we generated a 'ground truth' digital breathing model based on a 4DCT scan from a lung stereotactic ablative radiotherapy (SAbR) patient. We simulated 225 breathing cycles with ±10% perturbations in amplitude, respiratory period, and time per respiratory phase. A high-resolution breath-hold CT (BHCT) was also acquired and used with a research virtual bronchoscopy software to autosegment 239 airways. Contours for planning target volume (PTV) and organs at risk (OARs) were defined on the maximum intensity projection of the 4DCT (CTMIP) and transferred to the average of the 10 4DCT phases (CTAVG). To design the motion management methods, the RT plan was recreated using different images and structure definitions. Methods m1 and m2 recreated the plan using the CTAVG image. In method m1, airways were deformed to the CTAVG. In m2, airways were deformed to each of the 4DCT phases, and union structures were transferred onto the CTAVG. In m3, the RT plan was recreated on each of the 10 phases, and the dose distribution from each phase was deformed to the BHCT and summed. Dose errors (mean [min, max]) in airways were: m1: 21% (0.001%, 93%); m2: 45% (0.1%, 179%); and m3: 4% (0.006%, 14%). Our work suggests that accurate dose estimation in moving small serial structures requires customized motion management techniques (like m3 in this work) rather than current clinical and investigational approaches. ? 2019 Institute of Physics and Engineering in Medicine.
机译:摘要:在放射治疗呼吸运动管理技术(RT)规划主要集中在维持肿瘤目标覆盖。一个充分的认识需要的是更小的串行结构占运动在剂量测定估计。在这样的结构准确剂量估计是对运动更敏感,因为呼吸会导致其在或出高剂量梯度场的完全移动。在这项工作中,我们研究了三种运动管理策略(M1-M3)发现估算气道剂量的准确方法。为了验证这些方法,我们生成基于从肺癌立体定向放射治疗烧蚀(SABR)病人4DCT扫描一个“地面实况”数字呼吸模式。我们模拟了在振幅为±10%的扰动,呼吸周期,并且每呼吸相位时间225个的呼吸周期。高分辨率屏气CT(BHCT)也被收购,与科研虚拟支气管镜检查软件用来autosegment 239和呼吸道。对于计划靶体积(PTV)和器官在风险(桨)等高线是在4DCT(CTMIP)的最大强度投影定义并传送到平均10个4DCT相(CTAVG)的。为了设计运动管理方法,RT计划是使用不同的图像和结构定义重新创建。方法M1和M2重新使用CTAVG形象的计划。在方法M1,气道被变形至CTAVG。以m 2,气道被变形到每个4DCT相的和联合的结构转移到所述CTAVG。在m3时,RT计划被重新创建在每个10个相,并且从每个相位的剂量分布被变形至BHCT和求和。在气道的剂量误差(平均值[最小值,最大值])为:M1:21%(0.001%,93%);平方米:45%(0.1%,179%);和m3:4%(0.006%,14%)。我们的研究表明在移动小串行结构需要定制运动管理技术(如M3在此工作),而不是目前的临床及侦查方法的准确剂量估算。还是2019年医学院物理与工程研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号