首页> 外文期刊>Physics in medicine and biology. >Accounting for respiratory motion in small serial structures during radiotherapy planning: proof of concept in virtual bronchoscopy-guided lung functional avoidance radiotherapy
【24h】

Accounting for respiratory motion in small serial structures during radiotherapy planning: proof of concept in virtual bronchoscopy-guided lung functional avoidance radiotherapy

机译:放射疗法规划中小序列结构中呼吸运动的核算:虚拟支气管镜引导肺功能避免放射疗法概念证明

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Respiratory motion management techniques in radiotherapy (RT) planning are primarily focused on maintaining tumor target coverage. An inadequately addressed need is accounting for motion in dosimetric estimations in smaller serial structures. Accurate dose estimations in such structures are more sensitive to motion because respiration can cause them to move completely in or out of a high dose-gradient field. In this work, we study three motion management strategies (m1?m3) to find an accurate method to estimate the dosimetry in airways. To validate these methods, we generated a ?ground truth? digital breathing model based on a 4DCT scan from a lung stereotactic ablative radiotherapy (SAbR) patient. We simulated 225 breathing cycles with??10% perturbations in amplitude, respiratory period, and time per respiratory phase. A high-resolution breath-hold CT (BHCT) was also acquired and used with a research virtual bronchoscopy software to autosegment 239 airways. Contours for planning target volume (PTV) and organs at risk (OARs) were defined on the maximum intensity projection of the 4DCT (CTMIP) and transferred to the average of the 10 4DCT phases (CTAVG). To design the motion management methods, the RT plan was recreated using different images and structure definitions. Methods m1 and m2 recreated the plan using the CTAVG image. In method m1, airways were deformed to the CTAVG. In m2, airways were deformed to each of the 4DCT phases, and union structures were transferred onto the CTAVG. In m3, the RT plan was recreated on each of the 10 phases, and the dose distribution from each phase was deformed to the BHCT and summed. Dose errors (mean [min, max]) in airways were: m1: 21% (0.001%, 93%); m2: 45% (0.1%, 179%); and m3: 4% (0.006%, 14%). Our work suggests that accurate dose estimation in moving small serial structures requires customized motion management techniques (like m3 in this work) rather than current clinical and investigational approaches.
机译:放射疗法(RT)规划中的呼吸运动管理技术主要集中在维持肿瘤目标覆盖范围内。不充分的需求是在较小的串行结构中的剂量估计中的运动。这种结构中的精确剂量估计对运动更敏感,因为呼吸可以使它们完全进出高剂量梯度场。在这项工作中,我们研究了三种运动管理策略(M1?M3),以找到一种准确的方法来估计气道中的剂量测定法。为了验证这些方法,我们生成了一个原始的真相?基于4DCT扫描的数字呼吸模型来自肺立体定向烧蚀放疗(SABR)患者的4DCT扫描。我们模拟振幅,呼吸期和呼吸阶段时间10%扰动呼吸循环。还获得了高分辨率呼​​吸锁定CT(BHCT),并与研究虚拟支气管镜软件一起使用,用于自动分段239气道。规划目标体积(PTV)和风险(OAR)的轮廓的轮廓定义在4DCT(CTMIP)的最大强度投影上,并转移到10 4DCT相的平均值(CTAVG)。为了设计运动管理方法,使用不同的图像和结构定义重新创建RT计划。方法M1和M2使用CTAVG图像重新创建计划。在方法M1中,气道对CTAVG变形。在M2中,气道对4DCT相的每一个变形,并将联合结构转移到CTAVG上。在M3中,RT计划在10个阶段中的每一个上重新生成,每个相的剂量分布变形为BHCT并求和。气道中的剂量误差(平均[min,max])是:m1:21%(0.001%,93%); M2:45%(0.1%,179%);和M3:4%(0.006%,14%)。我们的作品表明,移动小型串行结构中的准确剂量估计需要定制的运动管理技术(如本工作中的M3)而不是当前的临床和调查方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号