...
首页> 外文期刊>Molecular Microbiology >Simultaneously inhibiting undecaprenyl phosphate production and peptidoglycan synthases promotes rapid lysis in Escherichia coli Escherichia coli
【24h】

Simultaneously inhibiting undecaprenyl phosphate production and peptidoglycan synthases promotes rapid lysis in Escherichia coli Escherichia coli

机译:同时抑制未赤枝磷酸盐产生和肽聚糖合成酶促进大肠杆菌大肠杆菌的快速裂解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Summary Peptidoglycan (PG) is a highly cross‐linked polysaccharide that encases bacteria, resists the effects of turgor and confers cell shape. PG precursors are translocated across the cytoplasmic membrane by the lipid carrier undecaprenyl phosphate (Und‐P) where they are incorporated into the PG superstructure. Previously, we found that one of our Escherichia coli laboratory strains (CS109) harbors a missense mutation in uppS , which encodes an enzymatically defective Und‐P(P) synthase. Here, we show that CS109 cells lacking the bifunctional aPBP PBP1B (penicillin binding protein 1B) lyse during exponential growth at elevated temperature. PBP1B lysis was reversed by: (i) reintroducing wild‐type uppS , (ii) increasing the availability of PG precursors or (iii) overproducing PBP1A, a related bifunctional PG synthase. In addition, inhibiting the catalytic activity of PBP2 or PBP3, two monofunctional bPBPs, caused CS109 cells to lyse. Limiting the precursors required for Und‐P synthesis in MG1655, which harbors a wild‐type allele of uppS , also promoted lysis in mutants lacking PBP1B or bPBP activity. Thus, simultaneous inhibition of Und‐P production and PG synthases provokes a synergistic response that leads to cell lysis. These findings suggest a biological connection that could be exploited in combination therapies.
机译:发明内容肽聚糖(PG)是一种高度交联的多糖,其包围细菌,抵抗Turgor和赋予细胞形状的影响。 PG前体通过脂质载体未赤赤烷基磷酸盐(und-p)兼容细胞质膜,其中它们掺入PG上层建筑中。以前,我们发现我们的大肠杆菌实验室菌株(CS109)中的一种upps中的官方突变,其编码酶促缺陷的缺陷缺陷的缺点(P)合酶。在这里,我们表明CS109细胞在升高温度下指数增长期间缺乏双官能APBP PBP1B(青霉素结合蛋白质1B)叙述。 PBP1B裂解通过:(i)重新介绍野生型UPP,(ii)增加PG前体或(III)的可用性,其过量PBP1A,一种相关的双官能PG合成酶。此外,抑制PBP2或PBP3的催化活性,两种单官能BPBPS导致CS109细胞依赖于莱斯佩。限制在Mg1655中的und-p合成所需的前体,其中乌珀野生型等位基因,也促进了缺乏PBP1B或BPBP活性的突变体中的裂解。因此,同时抑制非P生产和PG合成酶引起能够导致细胞裂解的协同反应。这些发现表明了一种可以在组合疗法中被利用的生物连接。

著录项

  • 来源
    《Molecular Microbiology》 |2019年第1期|共16页
  • 作者单位

    Department of Microbiology and ImmunologyUniversity of Arkansas for Medical SciencesLittle Rock AR;

    Department of Microbiology and ImmunologyUniversity of Arkansas for Medical SciencesLittle Rock AR;

    Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health;

    Department of Microbiology and ImmunologyUniversity of Arkansas for Medical SciencesLittle Rock AR;

    Department of Microbiology and ImmunologyUniversity of Arkansas for Medical SciencesLittle Rock AR;

    Department of Microbiology and ImmunologyUniversity of Arkansas for Medical SciencesLittle Rock AR;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号