...
【24h】

Surface plasmon amplification in refractory transition metal nitrides based nanoparticle dimers

机译:耐火过渡金属氮化物纳米粒子二聚体中的表面等离子体扩增

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Aggregates of plasmonic nanoparticles (NPs) are known to show greater electric field amplification, multiple resonant peaks, and precisely controlled spectral tuning compared to their isolated counterpart The ability of localized surface plasmon mediated electric field amplification is an important criterion for a plasmonic system to act as an efficient Surface Enhanced Raman Scattering (SERS) substrate. Conventional coinage metals like gold (Au), silver (Ag) and copper (Cu) are most widely used SEAS substrates, mainly due to their well established synthesis process and large Raman signal amplification. However, there is a pressing need to expand the list of plasmonic materials feasible for SEAS substrates to match the exponential growth in SEAS research. Identification of new plasmonic substrates will reduce the dependence on conventional plasmonic materials and SEAS applications will extend into unexplored spectral regions. Moreover, one can circumvent the limitations arising due to the intrinsic nature of conventional plasmonic materials. Refractory Transition Metal Nitrides (RTMN) such as zirconium nitride (ZrN) and titanium nitride (TiN) has emerged as viable alternatives to coinage metals due mainly to, high electron conductivity, suitability for high temperature applications, optical response in Vis-NIR region, flexible spectral fine-tuning, and bio/CMOS compatibility. To the best of our knowledge, this article presents first-ever theoretical assessment of ZrN and TiN nanoparticle dimers for their suitability in enhancing electric field. Moreover, the role of nanoparticle size, embedding medium and inter-particle separation is quantified through filling relations whose usefulness is demonstrated by designing nitrides based SEAS substrates for selected wavelengths. The present work will provide handy tools to the designers and manufacturers.
机译:已知等离子体纳米颗粒(NPS)的聚集体显示出更大的电场放大,多谐振峰和精确控制的光谱调谐,与其隔离的对应物相比,局部表面等离子体介导的电场放大的能力是代理的等离子体系统的重要标准作为高效的表面增强拉曼散射(SERS)衬底。常规的铸造金属如金(Au),银(Ag)和铜(Cu)是最广泛使用的海底基材,主要是由于其成熟的合成过程和大的拉曼信号放大大。然而,有必要扩大SEAS基板可行的等离子体材料列表以匹配海洋研究中的指数增长。鉴定新的等离子体基材将减少对传统等离子体材料的依赖性,海洋应用将延伸到未探测的光谱区域。此外,可以避免由于传统等离子体材料的内在性质而产生的限制。诸如氮化锆(ZrN)和氮化钛(锡钛)的耐火过渡金属氮化物(RTMN)被出现为带有主要的可行金属的可行替代品,主要是由于高电子传导性,高温应用,Vis-Nir区域的光学响应,灵活的光谱微调和生物/ CMOS兼容性。据我们所知,本文介绍了ZrN和锡纳米粒子二聚体的首先是在增强电场的适用性。此外,通过填充关系来定量纳米颗粒尺寸,嵌入介质和颗粒间分离的作用,其通过设计用于所选波长的氮化物的SEA基板来证明其有用性的关系。目前的工作将为设计人员和制造商提供方便的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号