首页> 外文期刊>RSC Advances >Catalytic ozonation process using a MgO nano-catalyst to degrade methotrexate from aqueous solutions and cytotoxicity studies in human lung epithelial cells (A549) after treatment
【24h】

Catalytic ozonation process using a MgO nano-catalyst to degrade methotrexate from aqueous solutions and cytotoxicity studies in human lung epithelial cells (A549) after treatment

机译:使用MgO纳米催化剂的催化臭氧处理方法从治疗后从水溶液中从水溶液和细胞毒性研究中降解甲氨蝶呤(A549)

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Pharmaceutical compounds which enter the environment are classified as emerging pollutants. Among different drug compounds, anti-cancer drugs like methotrexate are of more concern due to their mutagenic, carcinogenic, and genotoxic properties. Therefore, the main objective of this study was to use catalytic ozonation processes (COPs) as novel advanced oxidation processes to degrade methotrexate from aqueous solutions. The calcination method was used to obtain a nitrate magnesium oxide nano-catalyst. The main variables considering the effect of single ozonation processes (SOPs) and COPs on the target pollutant were initial methotrexate concentration, contact time, solution pH, and MgO dosage. The BET results indicated that the surface area of the MgO nano-catalyst was 140.031 m(2) g(-1). Based on the BJH plot, the size of the MgO nano-catalyst and average pore volume were 44.5 nm and 0.4454 cm(3) g(-1), respectively. The weight percent of Mg and O was 61.09% and 38.91%, respectively. In acidic and alkaline pH, the degradation rate of methotrexate showed a higher increase in SOPs and COPs than at neutral pH. The degradation rate of methotrexate decreased with increasing concentration. By increasing the contact time, the degradation rate of methotrexate of both SOPs and COPs increased. Actually, the methotrexate degradation in COPs was faster than in SOPs. When using tert-butanol as a scavenger, the reduced removal efficiency in SOPs and COPs was 32% and 31%, respectively.
机译:进入环境的药物化合物被归类为新兴污染物。在不同的药物化合物中,由于其致突变性,致癌和遗传毒性特性,甲氨蝶呤等抗癌药物具有更高的关注。因此,本研究的主要目的是使用催化臭氧处理方法(COP)作为新的先进氧化方法,从水溶液中降解甲氨蝶呤。煅烧方法用于获得硝酸镁氧化镁纳米催化剂。考虑单一臭氧处理(SOP)和COPS对目标污染物对靶污染物的主要变量是初始甲氨蝶呤浓度,接触时间,溶液pH和MgO剂量。 BET结果表明,MgO纳米催化剂的表面积为140.031m(2 )g(-1)。基于BJH图,MgO纳米催化剂的尺寸和平均孔体积分别为44.5nm和0.4454cm(3 )g(-1)。 Mg和O的重量百分比分别为61.09%和38.91%。在酸性和碱性pH中,甲氨蝶呤的降解率显示出比中性pH在中性pH中的SOPS和COPS较高。随着浓度的增加,甲氨蝶呤的降解率降低。通过增加接触时间,SOP和警察的甲氨蝶呤的降解率增加。实际上,警察中的甲氨蝶呤降解速度比SOPS更快。当使用叔丁醇作为清除剂时,SOP和COPS中的去除效率降低分别为32%和31%。

著录项

  • 来源
    《RSC Advances》 |2019年第15期|共11页
  • 作者单位

    Baqiyatallah Univ Med Sci Lifestyle Inst Hlth Res Ctr Tehran Iran;

    Baqiyatallah Univ Med Sci Lifestyle Inst Hlth Res Ctr Tehran Iran;

    Lorestan Univ Med Sci Nutr Hlth Res Ctr Khorramabad Iran;

    Fasa Univ Med Sci Dept Publ Hlth Fasa Iran;

    Baqiyatallah Univ Med Sci Lifestyle Inst Hlth Res Ctr Tehran Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号