...
首页> 外文期刊>RSC Advances >Observation of giant spin-orbit interaction in graphene and heavy metal heterostructures
【24h】

Observation of giant spin-orbit interaction in graphene and heavy metal heterostructures

机译:石墨烯和重金属异质结构中巨型旋转轨道相互作用的观察

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Graphene is a promising material demonstrating some interesting phenomena such as the spin Hall effect, bipolar transistor effect, and non-trivial topological states. However, graphene has an intrinsically small spin-orbit interaction (SOI), making it difficult to apply in spintronic devices. The electronic band structure of graphene makes it possible to develop a systematic method to enhance SOI extrinsically. In this study, we designed a graphene field-effect transistor with a Pb layer intercalated between graphene (Gr) and Au layers and studied the effect on the strength of the SOI. The SOI in our system was significantly increased to 80 meV, which led to a giant non-local signal (similar to 180 omega) at room temperature due to the spin Hall effect. Further, we extract key parameters of spin transport from the length and width dependence of non-local measurement. To support these findings, we also measured the temperature and gate-dependent weak localization (WL) effect. We obtained the magnitude of the SOI and spin relaxation time of Gr via quantitative analysis of WL. The SOI magnitudes estimated from the non-local signal and the WL effect are close in value. The enhancement of the SOI of Gr at room temperature is a potential simple manipulation method to explore the use of this material for spin-based applications.
机译:石墨烯是一种有希望的材料,证明了一些有趣的现象,如旋转霍尔效应,双极晶体管效应和非琐碎的拓扑状态。然而,石墨烯具有本质上小的旋转轨道相互作用(SOI),使得难以在旋转式装置中施加。石墨烯的电子带结构使得可以开发系统的系统,以外部增强SOI。在这项研究中,我们设计了一个石墨烯场效应晶体管,其具有在石墨烯(GR)和Au层之间嵌入的PB层,并研究了对SOI的强度的影响。由于旋转霍尔效应,我们系统中的SOI显着增加到80 MeV,这导致室温下的巨大非局部信号(类似于180Ω)。此外,我们从非局部测量的长度和宽度依赖性中提取旋转传输的关键参数。为了支持这些发现,我们还测量了温度和栅极依赖性弱定位(WL)效应。通过对WL的定量分析,我们获得了GR的SOI和旋转弛豫时间的大小。从非局部信号和WL效果估计的SOI幅度是靠近值的。在室温下GR的SOI的增强是一种潜在的简单操作方法,用于探讨这种材料用于自旋的应用。

著录项

  • 来源
    《RSC Advances》 |2019年第54期|共9页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号