首页> 外文期刊>RSC Advances >Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion
【24h】

Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion

机译:广角偏振无关超宽带高效选择性超材料吸收器的数值研究,用于近乎理想的太阳能热能转换

获取原文
获取原文并翻译 | 示例
           

摘要

Highly efficient solar absorption is very promising for many practical applications, such as power generation, desalination, wastewater treatment and steam generation. Nevertheless, so far, near-ideal solar thermal energy conversion is still difficult to achieve, which requires a near-perfect absorption from the UV to the near-infrared region and meanwhile a mid-and-far infrared absorption close to zero. Here, by employing FEM and FDTD methods respectively, a nearly omnidirectional ultra-broadband efficient selective solar absorber based on a nanoporous hyperbolic metamaterial (HMM) structure is proposed and numerically demonstrated, which can achieve an extremely high average absorption efficiency above 98.9% within the range of 260-1580 nm. More significantly, in the respect of physical mechanism, the near-perfect solar absorption of this multilayered nanostructures is primarily due to the excitation of magnetic and electric resonances resulting from localized surface plasmon resonance at metal/dielectric interfaces, working completely different from those previously reported tapered multilayered absorbers associated with the slow-light effect. Besides, for retaining heat, a low emissivity is realized in mid-infrared region, causing a near-ideal total solar-thermal conversion efficiency up to 90.32% at 373.15 K ((ideal) = 95.6%), which is particularly useful in solar steam generation. Detailed studies are also performed for higher operating temperatures, which indicates efficient solar thermal conversions also can be well maintained by tuning geometric parameters at higher temperatures. Taking into consideration of the practical application, even with +/- 60 degrees angle of incidence, average absorptivity higher than 90% can be still obtained in the whole solar spectrum at both TE and TM polarization. The near-perfect absorption, wide angle, polarization independence, spectral selectivity and high tunability make this solar absorber promising for practical applications in solar energy harvesting.
机译:高效的太阳能吸收对于许多实际应用非常有前途,例如发电,海水淡化,废水处理和蒸汽产生。尽管如此,到目前为止,近乎理想的太阳能热能转换仍然难以实现,这需要从UV到近红外区域的近乎完美的吸收,并且同时与零的中远和远的红外吸收。这里,通过采用有限元和FDTD方法,提出了一种基于纳米多孔双曲金超玻璃材料(HMM)结构的几乎全向超宽带有效的选择性太阳能吸收器,并在数值上证明,这可以在98.9%以上获得极高的平均吸收效率范围为260-1580 nm。更重要的是,在物理机制方面,该多层纳米结构的近乎完美的太阳能吸收主要是由于金属/介电接口的局部表面等离子体共振产生的磁性和电谐振的激发,与先前报道的那些完全不同锥形多层吸收器与慢光效果相关。此外,对于保持热量,在中红外区域实现低发射率,在373.15k((理想)= 95.6%)中导致近乎理想的总太阳能转化效率高达90.32%,在太阳能中特别有用蒸汽一代。还对更高的操作温度进行了详细研究,这表明通过在较高温度下调谐几何参数,也可以很好地维护有效的太阳能热转换。考虑到实际应用,即使具有+/- 60度的发射角度,在TE和TM偏振中的整个太阳光谱中仍然可以获得高于90%的平均吸收率。近乎完美的吸收,广角,偏振独立性,光谱选择性和高可调性使得这种太阳能吸收器对太阳能收割的实际应用有望。

著录项

  • 来源
    《RSC Advances》 |2018年第38期|共11页
  • 作者单位

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号