...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Controlling Directional Liquid Motion on Micro- and Nanocrystalline Diamond/β-SiC Composite Gradient Films
【24h】

Controlling Directional Liquid Motion on Micro- and Nanocrystalline Diamond/β-SiC Composite Gradient Films

机译:控制微型和纳米晶金刚石/β-SiC复合梯度膜的定向液体运动

获取原文
获取原文并翻译 | 示例

摘要

In this Article, we report the synthesis of micro- and nanocrystalline diamond/β-SiC composite gradient films, using a hot filament chemical vapor deposition (HFCVD) technique and its application as a robust and chemically inert means to actuate water and hazardous liquids. As revealed by scanning electron microscopy, the composition of the surface changed gradually from pure nanocrystalline diamond (hydrophobic) to a nanocrystalline β-SiC surface (hydrophilic). Transmission electron microscopy and Raman spectroscopy were employed to determine the presence of diamond, graphite, and β-SiC phases. The as-prepared gradient films were evaluated for their ability to actuate water. Indeed, water was transported via the gradient from the hydrophobic (hydrogen-terminated diamond) to the hydrophilic side (hydroxyl-terminated β-SiC) of the gradient surface. The driving distance and velocity of water is pivotally influenced by the surface roughness. The nanogradient surface showed significant promise as the lower roughness combined with the longer gradient yields in transport distances of up to 3.7 mm, with a maximum droplet velocity of nearly 250 mm/s measured by a high-speed camera. As diamond and β-SiC are chemically inert, the gradient surfaces can be used to drive hazardous liquids and reactive mixtures, which was signified by the actuation of hydrochloric acid and sodium hydroxide solution. We envision that the diamond/β-SiC gradient surface has high potential as an actuator for water transport in microfluidic devices, DNA sensors, and implants, which induce guided cell growth.
机译:在本文中,我们通过热丝化学气相沉积(HFCVD)技术及其应用作为稳健和化学惰性手段来报告微型和纳米晶金刚石/β-SiC复合梯度梯度膜的合成,以致动水和危险液体。如扫描电子显微镜透视所揭示的,表面的组成从纯纳晶金刚石(疏水)逐渐改变为纳米晶β-SiC表面(亲水)。使用透射电子显微镜和拉曼光谱法测定金刚石,石墨和β-SiC阶段的存在。评价AS制备的梯度薄膜的致动水的能力。实际上,水通过梯度从疏水性(氢封端的金刚石)到​​梯度表面的亲水侧(羟基封端β-SiC)运输水。水的驱动距离和水的速度受到表面粗糙度的可枢转。随着较低粗糙度的较低梯度在运输距离高达3.7mm的较长梯度的较长率,最大液滴速度,纳米润载表面具有显着的承诺,其通过高速相机测量的最大液滴速度近250毫米/秒。随着金刚石和β-SiC在化学上惰性,梯度表面可用于驱动危险的液体和反应混合物,其通过盐酸和氢氧化钠溶液的致动表示。我们设想钻石/β-SiC梯度表面具有高潜力作为用于微流体装置,DNA传感器和植入物中的用于水运输的致动器,其诱导引导细胞生长。

著录项

  • 来源
  • 作者单位

    Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 People’s Republic of China;

    College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 People’s Republic of China;

    Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 People’s Republic of China;

    Institute of Materials China Academy of Engineering Physics Mianyang 621907 People’s Republic of China;

    Institute of Materials Engineering University of Siegen Paul-Bonatz-Stra?e 9-11 57076 Siegen Germany;

    Department of Biomedical Engineering School of Medicine Shenzhen University Shenzhen 518060 People’s Republic of China;

    Center of Super-Diamond and Advanced Films (COSDAF) City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong;

    Center of Super-Diamond and Advanced Films (COSDAF) City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong;

    College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 People’s Republic of China;

    Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 People’s Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学 ; 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号