...
首页> 外文期刊>Nanotechnology >Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition
【24h】

Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition

机译:冷壁化学气相沉积电沉积Cu上单层石墨烯的成核和生长

获取原文
获取原文并翻译 | 示例

摘要

The nucleation density and average size of graphene crystallites grown using cold wall chemical vapor deposition (CVD) on 4 mu m thick Cu films electrodeposited on W substrates can be tuned by varying growth parameters. Growth at a fixed substrate temperature of 1000 degrees C and total pressure of 700 Torr using Ar, H-2 and CH4 mixtures enabled the contribution of total flow rate, CH4:H-2 ratio and dilution of the CH4/H-2 mixture by Ar to be identified. The largest variation in nucleation density was obtained by varying the CH4:H-2 ratio. The observed morphological changes are analogous to those that would be expected if the deposition rate were varied at fixed substrate temperature for physical deposition using thermal evaporation. The graphene crystallite boundary morphology progresses from irregular/jagged through convex hexagonal to regular hexagonal as the effective C deposition rate decreases. This observation suggests that edge diffusion of C atoms along the crystallite boundaries, in addition to H-2 etching, may contribute to shape evolution of the graphene crystallites. These results demonstrate that graphene grown using cold wall CVD follows a nucleation and growth mechanism similar to hot wall CVD. As a consequence, the vast knowledge base relevant to hot wall CVD may be exploited for graphene synthesis by the industrially preferable cold wall method.
机译:使用冷壁化学气相沉积(CVD)在W基板上电沉积的4μM厚Cu膜上生长的石墨烯微晶(CVD)的成核密度和平均尺寸可以通过不同的生长参数进行调节。固定基板温度为1000℃的固定基板温度和使用Ar的700托的总压力,H-2和CH 4混合物使总流速,CH 4:H-2比率和稀释CH 4 / H-2混合物的贡献要确定。通过改变CH 4:H-2比,得到成核密度的最大变化。观察到的形态学变化类似于预期的那些,如果在固定基板温度下变化,以使用热蒸发物理沉积。石墨烯微晶边界形态通过凸六边形的不规则/锯齿呈常规六边形进行,因为有效的C沉积速率降低。该观察结果表明,除了H-2蚀刻之外,除了H-2蚀刻之外,C原子的边缘扩散沿着微晶边界可有助于石墨烯微晶的形状演变。这些结果表明,使用冷壁CVD生长的石墨烯遵循类似于热壁CVD的成核和生长机制。因此,通过工业上优选的冷壁法利用与热壁CVD相关的巨大知识基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号