首页> 外文期刊>Nanotechnology >Exploring load, velocity, and surface disorder dependence of friction with one-dimensional and two-dimensional models
【24h】

Exploring load, velocity, and surface disorder dependence of friction with one-dimensional and two-dimensional models

机译:用一维和二维模型探索摩擦摩擦的负荷,速度和表面紊乱

获取原文
获取原文并翻译 | 示例
           

摘要

The effect of surface disorder, load, and velocity on friction between a single asperity contact and a model surface is explored with one-dimensional and two-dimensional Prandtl-Tomlinson (PT) models. We show that there are fundamental physical differences between the predictions of one-dimensional and two-dimensional models. The one-dimensional model estimates a monotonic increase in friction and energy dissipation with load, velocity, and surface disorder. However, a two-dimensional PT model, which is expected to approximate a tip-sample system more realistically, reveals a non-monotonic trend, i.e. friction is inert to surface disorder and roughness in wearless friction regime. The two-dimensional model discloses that the surface disorder starts to dominate the friction and energy dissipation when the tip and the sample interact predominantly deep into the repulsive regime. Our numerical calculations address that tracking the minimum energy path and the slip-stick motion are two competing effects that determine the load, velocity, and surface disorder dependence of friction. In the two-dimensional model, the single asperity can follow the minimum energy path in wearless regime; however, with increasing load and sliding velocity, the slip-stick movement dominates the dynamic motion and results in an increase in friction by impeding tracing the minimum energy path. Contrary to the two-dimensional model, when the one-dimensional PT model is employed, the single asperity cannot escape to the minimum energy minimum due to constraint motion and reveals only a trivial dependence of friction on load, velocity, and surface disorder. Our computational analyses clarify the physical differences between the predictions of the one-dimensional and two-dimensional models and open new avenues for disordered surfaces for low energy dissipation applications in wearless friction regime.
机译:表面紊乱,载荷和速度对单个粗糙接触与模型表面之间的摩擦的影响,用一维和二维普兰特 - Tomlinson(PT)模型探索。我们表明,一维和二维模型的预测之间存在基本的物理差异。一维模型估计摩擦力和能量耗散的单调增加,载荷,速度和表面紊乱。然而,预计更现实的二维PT模型,预期近似于尖端样本系统,揭示了非单调趋势,即摩擦对表面紊乱和无铅摩擦制度的粗糙度呈惰性。二维模型公开了表面疾病在尖端和样品主要深入排放到排斥状态时,表面疾病开始占据摩擦和能量耗散。我们的数值计算地址,跟踪最小能量路径和滑动棒运动是两种竞争效果,确定摩擦的载荷,速度和表面紊乱。在二维模型中,单一的粗糙可以遵循无铅制度中的最小能量路径;然而,随着负荷和滑动速度的增加,滑动杆运动主导动态运动,并导致通过阻止追踪最小能量路径来增加摩擦。与二维模型相反,当采用一维PT模型时,由于约束运动,单个粗糙度不能逸出到最小能量最小值,并且仅揭示摩擦对载荷,速度和表面紊乱的差异依赖性。我们的计算分析阐明了一维和二维模型的预测之间的物理差异,并打开了无序表面的新途径,以便在无铅摩擦方案中进行低能量耗散应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号