首页> 外文期刊>Nanotechnology >Spectrally-resolved internal quantum efficiency and carrier dynamics of semipolar (10(1)over-bar1) core-shell triangular nanostripe GaN/InGaN LEDs
【24h】

Spectrally-resolved internal quantum efficiency and carrier dynamics of semipolar (10(1)over-bar1) core-shell triangular nanostripe GaN/InGaN LEDs

机译:SemipoLar的光谱分辨内部量子效率和载波动力学(10(1)覆盖1)芯壳三角形纳米杆GAN / Ingan LED

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We investigate the spectrally resolved internal quantum efficiency (IQE) and carrier dynamics in semipolar(10 (1) over bar1) core-shell triangular nanostripe light-emitting diodes (TLEDs) using temperature-dependent photoluminescence (TDPL) and time-resolved photoluminescence (TRPL) at various excitation energy densities. Using electroluminescence, photoluminescence, and cathodoluminescence measurements, we verify the origins of the broad emission spectra from the nanostructures and confirm that localized regions of high-indium-content InGaN exist along the apex of the nanostructures. Spectrally resolved IQE measurements are then performed, with the spectra integrated from 400-450 nm and 450-500 nm to obtain the IQE of the QWs mainly near the sidewalls and apex of the TLEDs, respectively. TDPL and TRPL are used to decouple the radiative and non-radiative carrier lifetimes for different regions of the emission spectra. We observe that the IQE is higher for the spectral region between 450 nm and 500 nm compared to the IQE between 400 and 450 nm. This result is in contrast to the typical observation that the IQE of planar GaN-based LEDs is lower for longer wavelengths (i.e., higher indium contents). We also observe a longer non-radiative recombination lifetime for the longer wavelength portion of the spectrum. Several explanations are proposed for the improved IQE and longer non-radiative lifetime observed near the apex of the nanostructures. The results show that nanostructures may be leveraged to design more efficient green LEDs, potentially addressing a long-standing challenge in GaN-based materials.
机译:我们使用温度依赖性光致发光(TDPL)和时间分辨的光致发光(促进)( TRPL)在各种激发能量密度。使用电致发光,光致发光和阴极发光测量,我们验证了来自纳米结构的宽发射光谱的起源,并确认了沿纳米结构的顶点存在的高铟含量ingan的局部区域。然后执行光谱分辨的IQE测量,利用400-450nm和450-500nm集成的光谱,以分别从侧壁附近获得QW的IQE,分别附近折叠的顶点。 TDPL和TrPL用于与发射光谱的不同区域分离辐射和非辐射载体寿命。我们观察到,与400和450nm之间的IQE相比,IQE对于450nm和500nm之间的光谱区域更高。该结果与典型观察相反,即平面GaN的LED的IQE用于更长的波长(即,较高的铟内容)。我们还观察到更长的频谱波长部分的更长的非辐射重组寿命。提出了几种解释,用于改进的IQE和更长的纳米顶点靠近纳米结构附近观察的非辐射寿命。结果表明,可以利用纳米结构来设计更有效的绿色LED,可能在甘基材料中解决长期存在的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号