首页> 外文学位 >Ultrafast carrier dynamics in semiconductor self-assembled quantum dots in the low carrier density regime.
【24h】

Ultrafast carrier dynamics in semiconductor self-assembled quantum dots in the low carrier density regime.

机译:在低载流子密度状态下,半导体自组装量子点中的超快载流子动力学。

获取原文
获取原文并翻译 | 示例

摘要

Self-assembled quantum dots are nanoscopic clusters of semiconductor atoms that exhibit atom-like properties because of their three dimensional quantum confining potentials. The quantum confinement offered by quantum dots is expected to reap benefits for many optoelectronic applications. In fact, high performance lasers and detectors based on quantum dots are already being developed. For these applications as well as for those with new functionalities, one of the most critical factors affecting performance will be relaxation processes of the carriers. Thus in order to fully exploit the benefits of self-assembled quantum dots, one must have a clear understanding of the physical mechanisms that govern carrier dynamics.; Ultrafast carrier dynamics which occur on the time scales of femtoseconds and picoseconds among the quantum dots at low densities are the topics of this thesis. A femtosecond differential transmission pump-probe technique is employed to time-resolve directly the carrier distribution among an ensemble of multilayer self-assembled quantum dots. Measurements show that in multilayer structures where the barrier region is very thin, electronic coupling occurs in a time scale of hundreds of femtoseconds among the confined excited states. In a slightly longer time scale on the order of just a few picoseconds, electrons and holes relax from the high-lying states down to the low-lying dot states. When electrons and holes are captured non-geminately or separately into the excited states of different dots, the electrons experience a phonon bottleneck or the suppression of the interlevel relaxation. This bottleneck signal decays with a time constant of approximately 750 picoseconds and is attributed to thermal excitation. Temperature-dependent measurements analyzed with an ensemble Monte Carlo simulation indicate that thermal reemission and non-radiative recombination play a strong role in the carrier dynamics above 100 Kelvin.; Collectively these results contribute to the ongoing efforts in the pursuit of a fuller understanding of the properties of self-assembled quantum dots.
机译:自组装量子点是半导体原子的纳米簇,由于其三维量子约束势能而具有原子状的特性。预计量子点提供的量子限制将为许多光电应用带来好处。实际上,基于量子点的高性能激光器和检测器已经在开发中。对于这些应用以及具有新功能的应用,影响性能的最关键因素之一将是载体的松弛过程。因此,为了充分利用自组装量子点的优势,必须对控制载流子动力学的物理机制有清楚的了解。本文以低密度量子点在飞秒和皮秒的时间尺度上发生的超快载流子动力学为研究对象。飞秒差分传输泵浦探测技术用于直接时间解析多层自组装量子点集合中的载流子分布。测量表明,在势垒区非常薄的多层结构中,电子耦合在有限的激发态之间以数百飞秒的时间尺度发生。在略微更长的时间尺度(仅几皮秒)中,电子和空穴从高处的状态下降到低处的点状态。当电子和空穴被非成对地或分别地捕获到不同点的激发态时,电子将经历声子瓶颈或抑制层间弛豫。该瓶颈信号以大约750皮秒的时间常数衰减,并且归因于热激励。用整体蒙特卡罗模拟分析了温度相关的测量结果,表明热释放和非辐射复合在100开尔文以上的载流子动力学中起着重要作用。总的来说,这些结果有助于人们对自组装量子点的性质有更全面的了解。

著录项

  • 作者

    Urayama, Junji.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Physics Condensed Matter.; Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:46:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号