首页> 外文期刊>Nanotechnology >Effect of cobalt doping on the electrochemical performance of trimanganese tetraoxide
【24h】

Effect of cobalt doping on the electrochemical performance of trimanganese tetraoxide

机译:钴掺杂对三烷基四氧化物电化学性能的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Nanostructured transition metal oxides (TMO) are potential materials widely explored by researchers for energy storage applications. In this study, spinel trimanganese tetraoxide (Mn3O4) and cobalt doped trimanganese tetraoxide (Co-Mn3O4) was synthesized by using a simple solvent assisted hydrothermal route. Pure Mn3O4 and Co-Mn3O4 nanomaterials were characterized by an x-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), UV-diffuse reflectance spectroscopy (UV-DRS), field emission scanning electron microscope (FESEM), and high resolution transmission electron microscope (HRTEM). XRD analysis revealed the body centered tetragonal spinel structure of Mn3O4 and Co-Mn3O4 with a space group as l4(1)/amd (141) and an approximate crystallite size of 45-33 nm. The presence of an Mn-O bond vibration was confirmed using FTIR and the band gap properties were analyzed through UV-DRS. Surface morphology and average grain size were examined using FESEM and HRTEM micrographs as nanosquares and nanospheres with diameter 126 nm and 118 nm, respectively. Electrochemical properties of Mn3O4 and Co-Mn3O4 were evaluated using cyclic voltammograms, charge-discharge curves, and electrochemical impedance spectra (EIS). Pure Mn3O4 showed a specific capacitance of 971 F g(-1) at 0.1 A g(-1) current density while Co-Mn3O4 achieved relatively higher specific capacitance of 1852 F g(-1) at the same current density. It is observed that the increased specific capacitance of Co-Mn3O4 mainly arises from the doping effect. Electrochemical analysis shows that the Co doped Mn3O4 nanomaterials can be a promising electrode material for supercapacitor.
机译:纳米结构过渡金属氧化物(TMO)是储能应用研究人员探索的潜在材料。在本研究中,通过使用简单的溶剂辅助水热途径合成尖晶石三烷氰化物(Mn3O4)和掺杂掺锰四氧化锰(CO-MN3O4)。纯MN3O4和CO-MN3O4纳米材料的特征在于X射线衍射仪(XRD),傅立叶变换红外光谱(FTIR),UV-漫射反射光谱(UV-DRS),场发射扫描电子显微镜(FESEM)和高分辨率传输电子显微镜(HRTEM)。 XRD分析显示MN3O4和CO-MN3O4的身体居中式四方尖晶石结构,空间组为L4(1)/ AMD(141),近似微晶尺寸为45-33nm。使用FTIR确认Mn-O键振动的存在,通过UV-DRS分析带隙性能。使用FESEM和HRTEM显微照片作为纳米颗粒和直径为126nm和118nm的纳米片来检查表面形态和平均粒度。使用循环伏安图,电荷排出曲线和电化学阻抗谱(EIS)评估Mn3O4和Co-Mn3O4的电化学性质。纯MN3O4在0.1Ag(-1)电流密度下显示出971f g(-1)的特定电容,而Co-Mn3O4以相同的电流密度实现的1852 f g(-1)的相对较高的比电容。观察到Co-Mn3O4的增加的特定电容主要产生掺杂效应。电化学分析表明,CO掺杂的MN3O4纳米材料可以是用于超级电容器的有希望的电极材料。

著录项

  • 来源
    《Nanotechnology》 |2020年第28期|共11页
  • 作者单位

    SRM Inst Sci &

    Technol Dept Phys &

    Nanotechnol Futurist Mat Res Ctr Planetary Explorat Kancheepuram 603203 Tamil Nadu India;

    SRM Inst Sci &

    Technol Dept Phys &

    Nanotechnol Futurist Mat Res Ctr Planetary Explorat Kancheepuram 603203 Tamil Nadu India;

    SRM Inst Sci &

    Technol Electrochem Energy Lab Dept Chem Kancheepuram 603203 Tamil Nadu India;

    SRM Inst Sci &

    Technol Dept Phys &

    Nanotechnol Futurist Mat Res Ctr Planetary Explorat Kancheepuram 603203 Tamil Nadu India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    trimanganese tetraoxide; nanosquare; nanosphere; doping; cobalt; supercapacitor;

    机译:三苯磺酸四氧化物;纳米塔基;纳米圈;掺杂;钴;超级电容器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号