首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Mesoscale Modeling of Dynamic Recrystallization: Multilevel Cellular Automaton Simulation Framework
【24h】

Mesoscale Modeling of Dynamic Recrystallization: Multilevel Cellular Automaton Simulation Framework

机译:动态再结晶的Messcale建模:多级蜂窝自动机仿真框架

获取原文
获取原文并翻译 | 示例
           

摘要

The main attraction of cellular automaton (CA) method used in computational material science lies on not only the simulation of recrystallization without the complicated differential equations calculation, but also the visualization of nucleation and grain growth during discontinuous recrystallization. In this work, by incorporating the idea of multilevel cellular space into the classical CA simulation framework and formulating cellular state transformation rules and data transfer rules between different levels of cellular space, the multilevel cellular automaton (MCA) model for dynamic recrystallization (DRX) is constructed for the first time. The developed MCA model includes a multilevel recrystallized nucleation (MRN) module and a full-field multilevel grain topological deformation (FMGTD) module. The thermal compression experiments of 316LN stainless steel are carried out, and the developed MCA model is applied to the numerical simulation of DRX for 316LN steel. The accuracy and reliability of this model are verified by comparing simulation results with experimental results. The influences of simulation parameters such as the number of levels N in the FMGTD module and the discrete strain increment on simulation results are discussed. The discrete cellular space area (i.e., grain topology mapping accuracy) in the MCA model increases with N but decreases with the discrete strain increment. The results show that the developed MCA model can not only describe the grain topological deformation in the DRX process more accurately but also more compatible with the physical mechanism of recrystallized nucleation. The calculation accuracy of the MCA model is higher than the existing CA model. Besides, the MCA model can be closer to the real deformation process while ensuring the high grain topology mapping accuracy and solve the problem of the loss of grain boundary area in the existing CA model.
机译:计算材料科学中使用的细胞自动机(CA)方法的主要吸引力不仅是在没有复杂的微分方程计算的情况下进行重结晶的模拟,而且在不连续重结晶期间的核切割和晶粒生长的可视化。在这项工作中,通过将多级蜂窝空间的思想结合到经典CA仿真框架中并在不同级别的蜂窝空间之间制定蜂窝状态变换规则和数据传输规则,用于动态再结晶(DRX)的多级蜂窝自动机(MCA)模型是第一次建造。开发的MCA模型包括多级重结晶成核(MRN)模块和全场多级晶粒拓扑变形(FMGTD)模块。进行316LN不锈钢的热压缩实验,并将开发的MCA模型应用于316LN钢的DRX的数值模拟。通过将仿真结果与实验结果进行比较来验证该模型的准确性和可靠性。讨论了仿真参数的影响,例如FMGTD模块中的水平N的数量和仿真结果上的离散应变增量。 MCA模型中的离散蜂窝空间区域(即,晶粒拓扑映射精度)随N而增加,但随着离散应变增量而减小。结果表明,发达的MCA模型不能更准确地描述DRX过程中的晶粒拓扑变形,而且与重结晶成核的物理机制更加兼容。 MCA模型的计算精度高于现有的CA型号。此外,MCA模型可以更接近真实变形过程,同时确保高颗粒拓扑映射精度,解决现有CA型号中的晶界区域的损失问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号