...
首页> 外文期刊>Medical Physics >A fast deep learning approach for beam orientation optimization for prostate cancer treated with intensity‐modulated radiation therapy
【24h】

A fast deep learning approach for beam orientation optimization for prostate cancer treated with intensity‐modulated radiation therapy

机译:强度调制放射疗法治疗前列腺癌光束定向优化的快速深深学习方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose Beam orientation selection, whether manual or protocol‐based, is the current clinical standard in radiation therapy treatment planning, but it is tedious and can yield suboptimal results. Many algorithms have been designed to optimize beam orientation selection because of its impact on treatment plan quality, but these algorithms suffer from slow calculation of the dose influence matrices of all candidate beams. We propose a fast beam orientation selection method, based on deep learning neural networks (DNN), capable of developing a plan comparable to those developed by the state‐of‐the‐art column generation (CG) method. Our model's novelty lies in its supervised learning structure (using CG to teach the network), DNN architecture, and ability to learn from anatomical features to predict dosimetrically suitable beam orientations without using dosimetric information from the candidate beams. This may save hours of computation. Methods A supervised DNN is trained to mimic the CG algorithm, which iteratively chooses beam orientations one‐by‐one by calculating beam fitness values based on Karush‐Kush‐Tucker optimality conditions at each iteration. The DNN learns to predict these values. The dataset contains 70 prostate cancer patients — 50 training, 7 validation, and 13 test patients — to develop and test the model. Each patient’s data contains 6 contours: PTV, body, bladder, rectum, and left and right femoral heads. Column generation was implemented with a GPU‐based Chambolle‐Pock algorithm, a first‐order primal‐dual proximal‐class algorithm, to create 6270 plans. The DNN trained over 400 epochs, each with 2500 steps and a batch size of 1, using the Adam optimizer at a learning rate of 1?×?10 ?5 and a sixfold cross‐validation technique. Results The average and standard deviation of training, validation, and testing loss functions among the six folds were 0.62?±?0.09%, 1.04?±?0.06%, and 1.44?±?0.11%, respectively. Using CG and supervised DNN, we generated two sets of plans for each scenario in the test set. The proposed method took at most 1.5?s to select a set of five beam orientations and 300?s to calculate the dose influence matrices for 5 beams and finally 20?s to solve the fluence map optimization (FMO). However, CG needed around 15?h to calculate the dose influence matrices of all beams and at least 400?s to solve both the beam orientation selection and FMO problems. The differences in the dose coverage of PTV between plans generated by CG and by DNN were 0.2%. The average dose differences received by organs at risk were between 1 and 6 percent: Bladder had the smallest average difference in dose received (0.956?±?1.184%), then Rectum (2.44?±?2.11%), Left Femoral Head (6.03?±?5.86%), and Right Femoral Head (5.885?±?5.515%). The dose received by Body had an average difference of 0.10?±?0.1% between the generated treatment plans. Conclusions We developed a fast beam orientation selection method based on a DNN that selects beam orientations in seconds and is therefore suitable for clinical routines. In the training phase of the proposed method, the model learns the suitable beam orientations based on patients’ anatomical features and omits time intensive calculations of dose influence matrices for all possible candidate beams. Solving the FMO to get the final treatment plan requires calculating dose influence matrices only for the selected beams.
机译:目的梁方向选择,无论是手动还是基于协议,是目前放射治疗治疗计划中的临床标准,但它是乏味的,可以产生次优效果。许多算法被设计成优化光束方向选择,因为它对治疗计划质量的影响,但这些算法遭受所有候选光束的剂量影响矩阵的缓慢计算。我们提出了一种快速光束取向选择方法,基于深度学习神经网络(DNN),能够开发与由最先进的柱生成(CG)方法开发的计划相当的计划。我们的模型的新颖性在于其监督学习结构(使用CG来教导网络),DNN架构和学习从解剖学特征的能力来预测小型合适的光束取向而不使用来自候选光束的剂量信息。这可以节省数小时的计算。方法训练监督DNN以模仿CG算法,该CG算法通过基于每个迭代的Karush-kush-tucker最优性条件计算光束适度值,迭代选择光束方向。 DNN学会预测这些值。该数据集包含70例前列腺癌患者 - 50次培训,7名验证和13名测试患者 - 开发和测试模型。每个患者的数据包含6个轮廓:PTV,身体,膀胱,直肠和左右股头。用基于GPU的Chambolle-Pock算法实现列生成,是一阶的原始双级课程算法,创建6270个计划。 DNN培训超过400个时期,每个时限和批量大小为1,使用ADAM优化器以1?×10?5和六倍交叉验证技术的学习率。结果六倍之间的训练,验证和测试损失功能的平均和标准偏差分别为0.62°(0.62Ω±0.09%,1.04°(1.04Ω±0.06%),分别为1.44?±0.11%。使用CG和监督DNN,我们为测试集中的每种方案生成了两组计划。所提出的方法最多需要1.5秒,选择一组五个光束方向,300?s以计算5个光束的剂量影响矩阵,最后20°S用于解决注量的地图优化(FMO)。然而,CG需要大约15?H来计算所有光束的剂量影响矩阵,并且至少400秒来解决光束方向选择和FMO问题。 CG和DNN产生的计划与DNN产生的PTV剂量覆盖的差异为0.2%。风险的器官接受的平均剂量差异在1%和6%之间:膀胱有收到的剂量的最小平均差异(0.956?±1.184%),然后直肠(2.44?±2.11%),左股头(6.03 ?±5.86%),右股头(5.885?±5.515%)。由身体接收的剂量平均差为0.10?±生成的治疗计划之间的0.1%。结论我们开发了一种基于DNN的快速光束方向选择方法,该方法在几秒钟内选择光束方向,因此适用于临床常规。在所提出的方法的训练阶段,该模型基于患者的解剖特征来学习合适的光束取向,并省略所有可能候选光束的剂量影响矩阵的时间密集型计算。解决FMO以获得最终治疗计划,需要仅针对所选光束计算剂量影响矩阵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号