首页> 外文期刊>Macromolecules >Impact of Hydration and Sulfonation on the Morphology and Ionic Conductivity of Sulfonated Poly(phenylene) Proton Exchange Membranes
【24h】

Impact of Hydration and Sulfonation on the Morphology and Ionic Conductivity of Sulfonated Poly(phenylene) Proton Exchange Membranes

机译:水化与磺化对磺化聚(苯基)质子交换膜的形态和离子电导率的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Multiple computational and experimental techniques are used to understand the nanoscale morphology and water/proton transport properties in a series of sulfonated Diels-Alder poly(phenylene) (SDAPP) membranes over a wide range of temperature, hydration, and sulfonation conditions. New synthetic methods allow us to sulfonate the SDAPP membranes to much higher ion exchange capacity levels than has been previously possible. Nanoscale phase separation between the hydrophobic polymer backbone and the hydrophilic water/sulfonic acid groups was observed for all membranes studied. We find good agreement between structure factors calculated from atomistic molecular dynamics (MD) simulations and those measured by X-ray scattering. With increasing hydration, the scattering ionomer peak in SDAPP is found to decrease in intensity. This intensity decrease is shown to be due to a reduction of scattering contrast between the water and polymer and is not indicative of any loss of nanoscale phase separation. Both MD simulations and density functional theory (DFT) calculations show that as hydration levels are increased, the nanostructure morphology in SDAPP evolves from isolated ionic domains to fully percolated water networks containing progressively weaker hydrogen bond strengths. The conductivity of the membranes is measured by electrical impedance spectroscopy and the equivalent proton conductivity calculated from pulsed-field-gradient (PFG) NMR diffusometry measurements of the hydration waters. Comparison of the measured and calculated conductivity reveals that in SDAPP the proton conduction mechanism evolves from being dominated by vehicular transport at low hydration and sulfonation levels to including a significant contribution from the Grotthuss mechanism (also known as structural diffusion) at higher hydration and sulfonation levels. The observed increase in conductivity reflects the impact that changing hydration and sulfonation have on the morphology and hydrogen bond net
机译:多种计算和实验技术用于在各种温度,水合和磺化条件下了解一系列磺化Diels-Alder(亚苯基)膜(SDAPP)膜中的纳米级形态和水/质子传输性能。新的合成方法允许我们将SDAPP膜磺化到比以前可能的更高的离子交换能力水平。对于研究的所有膜,观察到疏水性聚合物主链和亲水性水/磺酸基团之间的纳米级相分离。我们在由原子分子动力学(MD)模拟中计算的结构因子和通过X射线散射测量的那些之间的结构因子之间找到了良好的一致性。随着水化的增加,发现SDAPP中的散射离聚物峰值降低强度。该强度降低显示是由于水和聚合物之间的散射对比度的降低,并且不指示任何纳米级相分离的损失。 MD模拟和密度泛函理论(DFT)计算表明,随着水合水平的增加,SDAPP中的纳米结构形态从分离的离子结构域演变为完全渗透的水网络,其含有逐渐较弱的氢键强度。膜的电导率通​​过电阻抗光谱和由水合水的脉冲场梯度(PFG)NMR扩散管测量值计算的等效质子电导率测量。测量和计算的电导率的比较表明,在SDAPP中,质子传导机构在低水合和磺化水平下由车辆传输的发展,以包括在更高水合和磺化水平下的麦克风机制(也称为结构扩散)的显着贡献。观察到的电导率的增加反映了改变水合和磺化对形态和氢键网的影响

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号