首页> 外文期刊>Forest Ecology and Management >A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data
【24h】

A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data

机译:使用全波形空机,离散空气传播和离散地面激光扫描数据的森林成分垂直分布的比较评估

获取原文
获取原文并翻译 | 示例
           

摘要

Laser scanning has the potential to accurately detect the vertical distribution of forest vegetative components. However, limitations are present and vary according to the system's platform (i.e., terrestrial or airborne) and recording method (i.e., discrete return or full-waveform). Terrestrial configurations detect close objects (i.e., lower vegetation strata) in more detail while airborne configurations detect a more detailed upper strata, with weak backscattered signals from lower strata. Moreover, discrete lidar systems record single or multiple hits from a given pulse at intercepted features in contrast to full-waveform systems, which register the pulse's complete backscattered signal providing complete vertical profiles. In this study, we examine for a boreal and a Mediterranean forest with contrasted conifer canopy densities: (i) the characterization of the vertical distribution and signal occlusion from three laser scanning configurations: full-waveform airborne (ALS(FW)), discrete airborne (ALS(D)), and discrete terrestrial (TLS); (ii) the comparison in the detection of understory vegetation by ALS(FW) and ALS(D) using TLS as reference; and (iii) the use of a methodological procedure based on the Gini index concept to group understory vegetation in density classes from both ALS(FW) and ALS(D) configurations. Our results demonstrate, firstly, that signal occlusion can be quantified by the rate of pulse reduction independently for data from all three laser scanning configurations. The ALS(D) configuration was the most affected by signal occlusion, leading to weak signal returns at the lower strata (z < 4 m) where the rate of pulse reduction was highest as a result of dense canopy covers. Secondly, we demonstrated the capabilities for both airborne laser scanning configurations to detect understory vegetation, albeit significantly more accurately with ALS(FW). Lastly, we demonstrated the use of the Gini index as an indicator to determine understory vegetation density classes, particularly for ALS(FW) data in dense canopy cover. We proceed to explain the limitations in detecting the vertical distribution from different configurations, and indicate that understory vegetation density classes may be successfully assigned with ALS(FW) in contrasted conifer canopy densities.
机译:激光扫描有可能精确地检测森林植物部件的垂直分布。然而,根据系统的平台(即陆地或空中)和记录方法(即离散返回或全波形),存在局限性并各种不同。陆地配置在空气传播配置检测更详细的上层时,陆地配置更详细地检测关闭对象(即,下植被地层),从下层的弱反向散射信号。此外,离散的LIDAR系统以与全波形系统相比,从给定脉冲记录单个或多次命中的单个或多次命中,该全波形系统寄存器提供完整的垂直轮廓的脉冲的完整反向散射信号。在这项研究中,我们检查了具有对比的针叶树冠层密度的北方和地中海森林:(i)来自三个激光扫描配置的垂直分布和信号闭塞的表征:全波形空气传播(ALS(FW)),离散空气传播(ALS(D))和离散地面(TLS); (ii)使用TLS作为参考的Als(FW)和Als(d)检测的比较。 (iii)使用基于GINI指数概念的方法方法,从ALS(FW)和ALS(D)配置中的密度类别中的较长植被组。我们的结果首先示出了信号遮挡可以通过独立于来自所有三种激光扫描配置的数据进行脉冲缩减的量化来量化。 ALS(D)配置受到信号遮挡最大的影响,导致弱信号在下层(Z <4米)处返回,其中脉冲减少速率由于致密的遮篷盖而最高。其次,我们证明了空气传播激光扫描配置来检测林植植被的能力,尽管用ALS(FW)明显更准确。最后,我们证明了使用基尼指数作为确定较长植被密度类别的指示,特别是对于致密顶篷覆盖中的ALS(FW)数据。我们继续解释检测来自不同配置的垂直分布的局限性,并且指示较大的植被密度类别可以以对比的针叶树冠层密度与ALS(FW)成功地分配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号