首页> 外文会议>ISPRS Technical Commission III Symposium >CORRECTING ATTENUATION EFFECTS CAUSED BY INTERACTIONS IN THE FOREST CANOPY IN FULL-WAVEFORM AIRBORNE LASER SCANNER DATA
【24h】

CORRECTING ATTENUATION EFFECTS CAUSED BY INTERACTIONS IN THE FOREST CANOPY IN FULL-WAVEFORM AIRBORNE LASER SCANNER DATA

机译:校正全波形空气传播激光扫描仪数据中森林冠层的交互造成的衰减效应

获取原文

摘要

Full-waveform airborne laser scanning offers a great potential for various forestry applications. Especially applications requiring information on the vertical structure of the lower canopy parts benefit from the great amount of information contained in waveform data. To enable the derivation of vertical forest canopy structure, the development of suitable voxel based data analysis methods is straightforward. Beyond extracting additional 3D points, it is very promising to derive the voxel attributes from the digitized waveform directly. For this purpose, the differential backscatter cross sections have to be projected into a Cartesian voxel structure. Thereby the voxel entries represent amplitudes of the cross section and can be interpreted as a local measure for the amount of pulse reflecting matter. However, the 'history' of each laser echo pulse is characterized by attenuation effects caused by reflections in higher regions of the crown. As a result, the received waveform signals within the canopy have a lower amplitude than it would be observed for an identical structure without the previous canopy structure interactions (Romanczyk et al., 2012). If the biophysical structure is determined from the raw waveform data, material in the lower parts of the canopy is thus under-represented. To achieve a radiometrically correct voxel space representation the loss of signal strength caused by partial reflections on the path of a laser pulse through the canopy has to be compensated. In this paper, we present an integral approach correcting the waveform at each recorded sample. The basic idea of the procedure is to enhance the waveform intensity values in lower parts of the canopy for portions of the pulse intensity, which have been reflected (and thus blocked) in higher parts of the canopy. The paper will discuss the developed correction method and show results from a validation both with synthetic and real world data.
机译:全波形机载激光扫描为各种林业应用提供了极大的潜力。特别是需要关于较低顶篷零件的垂直结构信息的应用,这些应用受益于波形数据中包含的大量信息。为了使垂直森林冠层结构的推导,基于适用的体素的数据分析方法的发展是简单的。除了提取额外的3D点之外,很有希望直接从数字化波形中导出体素属性。为此,差分反向散射横截面必须投影到笛卡尔结构中。因此,体素条目代表横截面的幅度,并且可以被解释为反射物质量的局部测量。然而,每个激光回声脉冲的“历史”的特征在于由冠部的较高区域中的反射引起的衰减效果。结果,冠层内的接收波形信号具有比在没有先前的冠层结构相互作用的情况下观察到相同结构的较低幅度(Romanczyk等,2012)。如果从原始波形数据确定生物物理结构,则因此底座下部的材料中的材料。为了实现辐射测量的体素空间表示,必须补偿通过冠层的激光脉冲路径上的部分反射引起的信号强度的损失。在本文中,我们介绍了一种积分方法,校正每个录制的样本处的波形。该过程的基本思想是增强脉冲强度的脉冲强度的较低部分中的波形强度值,该脉冲强度在冠层的较高部分中被反射(并因此被阻挡)。本文将讨论发达的校正方法,并显示验证与合成和现实世界数据的验证结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号