...
首页> 外文期刊>Electrochimica Acta >An electrochemical investigation of interfacial electron uptake by the sulfur oxidizing bacterium Thioclava electrotropha ElOx9
【24h】

An electrochemical investigation of interfacial electron uptake by the sulfur oxidizing bacterium Thioclava electrotropha ElOx9

机译:硫氧化菌硫伐硫代菌电泳elox9的界面电子吸收的电化学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Extracellular electron transfer (EET) allows microbes to acquire energy from solid state electron acceptors and donors, such as environmental minerals. This process can also be harnessed at electrode interfaces in bioelectrochemical technologies including microbial fuel cells, microbial electrosynthesis, bioremediation, and wastewater treatment. Improving the performance of these technologies will benefit from a better fundamental understanding of EET in diverse microbial systems. While the mechanisms of outward (i.e. microbe-to-anode) EET is relatively well characterized, specifically in a few metal-reducing bacteria, the reverse process of inward EET from redox-active minerals or cathodes to bacteria remains poorly understood. This knowledge gap stems, at least partly, from the lack of well-established model organisms and general difficulties associated with laboratory studies in existing model systems. Recently, a sulfur oxidizing marine microbe, Thioclava electrotropha ElOx9, was demonstrated to perform electron uptake from cathodes. However, a detailed analysis of the electron uptake pathways has yet to be established, and electrochemical characterization has been limited to aerobic conditions. Here, we report a detailed amperometric and voltammetric characterization of ElOx9 cells coupling cathodic electron uptake to reduction of nitrate as the sole electron acceptor, even in the absence of any added inorganic carbon source. By comparing this cellular activity to spent media controls and using medium exchange experiments, we demonstrate that one of the pathways by which ElOx9 facilitates inward EET is by a direct-contact mechanism through a redox center with a formal potential of -94 mV vs SHE, rather than soluble intermediate electron carriers. In addition to the implications for understanding microbial sulfur oxidation in marine environments, this study highlights the potential for ElOx9 to serve as a convenient and readily culturable model organism for understanding the molecular mechanisms of inward EET. (C) 2019 Elsevier Ltd. All rights reserved.
机译:细胞外电子传递(EET)允许从固态电子受体和给体,如环境的矿物质微生物以获取能量。这个过程也可以在电极界面在生物电化学技术,包括微生物燃料电池,微生物电合成,生物修复,和废水处理利用。提高这些技术的性能将受益于不同的微生物系统EET更好的基本了解。而向外的机制(即,微生物到阳极)EET相对很好地表征,特别是在几个金属还原菌,从氧化还原活性矿物或阴极向内EET的细菌的逆过程仍然知之甚少。这方面的知识差距茎,至少部分地,因缺乏行之有效的模式生物,并与实验室研究在现有模型系统相关的一般困难。近来,硫氧化微生物海洋,Thioclava electrotropha ElOx9,被证明从阴极进行电子摄取。然而,电子的摄取途径的详细分析已尚未建立,和电化学表征已被限制为需氧条件。这里,我们报告ElOx9细胞的详细安培和伏安表征耦合阴极电子摄取硝酸盐还原作为唯一电子受体的,即使在不存在任何添加的无机碳源。通过这种细胞活动比较花了媒体控制和使用中交换实验,我们证明了由ElOx9利于途径之一向内EET是通过直接接触的机制,通过氧化还原中心与-94毫伏VS SHE正式的潜力,而不是可溶性中间电子载体。除了影响对于理解在海洋环境中的微生物硫氧化,本研究亮点的潜力ElOx9以作为了解向内EET的分子机制的便利且容易培养的模式生物。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号