首页> 外文期刊>Electrochimica Acta >Evaluation of ion-transport in composite polymer-in-ceramic electrolytes. Case study of active and inert ceramics
【24h】

Evaluation of ion-transport in composite polymer-in-ceramic electrolytes. Case study of active and inert ceramics

机译:复合聚合物陶瓷电解质中离子转运的评价。 活性和惰性陶瓷的案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

Inorganic ceramics- and organic polymer-based solid electrolytes (SE) could revolutionize battery technology because of their nontoxicity, stability during operation and enhanced safety. Of particular interest are electrolytes, which contain high concentrations of ion charge carriers with a minimum polymer concentration, and enable the major ion-conduction path through the inorganic material. In this article we compare ion-conduction mechanisms in two solid electrolytes composed of either an inert or active ceramic matrix with imbedded LiI:P(EO)(n) electrolytes. On the basis of AC-impedance and NMR data, we suggest that the high-ionic-conductivity (0.5 mS/cm) and low-activation-energy (2.3 kJ/mol) ion paths are brought about by the grain boundaries between the excess of LiI and inert LiAlO2 ceramic nanoparticles. Both confined-in-ceramic polymer electrolyte (PE) and ceramic LiAlO2 grains impede the total ion mobility. The fast ion transport in polymer-in-ceramic electrolytes composed of high-conductivity active Li10SnP2S12, goes through lithium-iodide-rich glass ceramics, and is restricted by slow ion transport via the imbedded polymer electrolyte. Unexpectedly, it was found that at 1:3 salt-to-polymer ratio, the contribution of grain-boundary conductivity in an inert-ceramic-based composite electrolyte is stronger than that of bulk conductivity via active ceramic matrix. One of the possible reasons of the reduced relative contribution of the active ceramics to the total conductivity of polymer-in-ceramic electrolyte is that the ceramic powder was not densified. (C) 2019 Elsevier Ltd. All rights reserved.
机译:无机陶瓷和有机聚合物基固体电解质(SE)可以由于它们的无毒,操作期间稳定性和增强安全而彻底改变电池技术。特别感兴趣的是电解质,其含有高浓度的具有最小聚合物浓度的离子电荷载流子,并使得通过无机材料的主要离子传导路径能够。在本文中,我们将由惰性或活性陶瓷基质组成的两种固体电解质中的离子传导机制与嵌入的LII:P(EO)(N)电解质进行比较。在AC阻抗和NMR数据的基础上,我们建议通过多余的晶界引起高离子导电性(0.5ms / cm)和低激活 - 能量(2.3kJ / mol)离子路径刘和惰性Lialo2陶瓷纳米粒子。限制陶瓷聚合物电解质(PE)和陶瓷LiAlO2晶粒妨碍了总离子迁移率。由高导电活性Li10SNP2S12组成的聚合物 - 陶瓷电解质中的快速离子输送通过富含锂 - 碘化物的玻璃陶瓷,并通过嵌入的聚合物电解质慢离子传输限制。出乎意料地,发现在1:3的盐 - 聚合物比率下,晶状体基复合电解质中的晶界导电性的贡献比通过活性陶瓷基质的散装电导率的贡献强。活性陶瓷对聚合物陶瓷电解质的总电导率降低的相对贡献的可能原因之一是陶瓷粉末未致密化。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号