首页> 外文学位 >Fracture mechanics evaluation approaches and experimental study of high-temperature fracture in ceramics and ceramic matrix composites.
【24h】

Fracture mechanics evaluation approaches and experimental study of high-temperature fracture in ceramics and ceramic matrix composites.

机译:陶瓷和陶瓷基复合材料的断裂力学评估方法和高温断裂的实验研究。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is concerned with two topics that are fundamental to understanding the mechanical reliability of ceramics and ceramic matrix composites. The first topic is a theoretical formulation of evaluation approaches to linear-elastic fracture (characteristic of monolithic ceramics) and nonlinear fracture with large-scale bridging (characteristic of fiber-reinforced ceramic matrix composites). The second topic is an experimental study of high temperature fracture in a monolithic ceramic, a particulate-reinforced ceramic and a continuous fiber-reinforced ceramic matrix composite.; In monolithic ceramics and particulate-reinforced ceramic matrix composites, which may be described by linear elastic fracture mechanics, an evaluation approach is proposed for the determination of fracture resistance based solely on measurements of crack opening displacement and crack length. Results using this displacement-based approach were found to agree closely with results using the traditional load-based approach. This approach is also used to analyze crack growth stability in fracture tests under different control modes.; In fiber-reinforced ceramic matrix composites, which can not be described by linear-elastic fracture mechanics due to a large fracture process zone, a nonlinear model is proposed. Large-scale bridging effects are treated by describing a crack using three phases: the external response, the fracture process zone response and the material parameter. The bridging law is considered to be a fundamental material property. The material is assumed to exhibit linear-elastic bulk behavior beyond the fracture process zone. In formulating the relations between the phases, two semi-infinite cracks are defined and used with the stress intensity theory employing the weight function method. An evaluation approach based on this nonlinear model is given. No specific computational approach, such as finite element analysis or the weight function method, is involved in the evaluation procedures; only geometry factors and large-scale bridging coefficients associated with the tested specimen are required. Finally, the evaluation approach is verified by finite element analysis and by analysis of experimental data from the literature.; A novel experimental technique was developed for the present study--elevated temperature fracture test using optical methods (ETFOM). This technique permits in-situ observations of micromechanical fracture processes at temperatures to 1500{dollar}spcirc{dollar}C. The apparatus employs a heating stage, a temperature controller and a standard optical microscope. Loading of the crack occurs by differential thermal expansion between the modified chevron-notched test specimen and a thermal loading wedge.; The ETFOM technique was used to study temperature dependent fracture toughness in a monolithic ceramic (sintered {dollar}alpha{dollar}-SiC) and a particulate-reinforced ceramic matrix composite (sintered (TiB{dollar}sb2)sb{lcub}rm P{rcub}{dollar}/SiC) in an inert gas atmosphere over a temperature range of 25-1250{dollar}spcirc{dollar}C. The technique was also used to investigate interlaminar fracture processes in a unidirectional Nicalon fiber reinforced zirconia titanate matrix composite. Relative toughness associated with cracks propagated in different material orientations were evaluated and related to observed toughening mechanisms, including crack bridging and crack branching. A thermal fatigue effect, which significantly degraded the material reliability under thermal cycling, was observed. The mechanism of the thermal fatigue crack growth was attributed to the temperature-induced phase transformation of free zirconia in the matrix. This result demonstrates the usefulness of in-situ observations of microscopic fracture processes at high temperature.
机译:本文涉及两个主题,这是理解陶瓷和陶瓷基复合材料机械可靠性的基础。第一个主题是评估线弹性断裂(整体陶瓷的特性)和非线性断裂(具有大规模桥接)(纤维增强陶瓷基复合材料的特性)的评估方法的理论公式。第二个主题是单块陶瓷,颗粒增强陶瓷和连续纤维增强陶瓷基复合材料高温断裂的实验研究。在可以通过线性弹性断裂力学描述的整体陶瓷和颗粒增强陶瓷基复合材料中,提出了一种仅基于裂纹开口位移和裂纹长度的测量方法来确定抗断裂性的评估方法。发现使用这种基于位移的方法的结果与使用传统的基于负载的方法的结果非常吻合。该方法还用于在不同控制模式下分析断裂试验中的裂纹扩展稳定性。在纤维增强的陶瓷基复合材料中,由于断裂过程区域大,无法用线性弹性断裂力学描述,因此提出了一种非线性模型。通过使用三个阶段描述裂缝来处理大规模的桥接效应:外部响应,断裂过程区域响应和材料参数。桥接定律被认为是基本的物质属性。假定该材料在断裂过程区域之外表现出线弹性体行为。在表达相之间的关系时,定义了两个半无限裂纹,并与采用权函数法的应力强度理论一起使用。给出了基于该非线性模型的评估方法。评估程序不涉及任何特定的计算方法,例如有限元分析或权函数方法;仅需要与被测样品相关的几何因子和大规模桥接系数。最后,通过有限元分析和文献中的实验数据分析验证了评估方法。本研究开发了一种新的实验技术-使用光学方法(ETFOM)进行高温断裂试验。该技术允许在温度高达1500spspcirc {dollar} C的情况下对微机械断裂过程进行现场观察。该设备采用加热台,温度控制器和标准光学显微镜。裂纹的加载是由于修改后的人字形缺口试样和热加载楔形之间的热膨胀差异引起的。 ETFOM技术用于研究整体陶瓷(烧结的{dollar}α{dollar} -SiC)和颗粒增强陶瓷基复合材料(烧结的(TiB {dollar} sb2)sb {lcub} rm P)中随温度变化的断裂韧性。在惰性气体气氛中,温度在25至1250摄氏度之间。该技术还用于研究单向Nicalon纤维增强氧化锆钛酸酯基复合材料的层间断裂过程。评估了与沿不同材料取向传播的裂纹相关的相对韧性,并将其与观察到的增韧机制相关,包括裂纹桥接和裂纹分支。观察到热疲劳效应,该效应显着降低了热循环下的材料可靠性。热疲劳裂纹扩展的机理归因于基体中游离氧化锆的温度诱导相变。该结果证明了高温下微观断裂过程的原位观察的有用性。

著录项

  • 作者

    Zhang, Changchun.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Mechanical.; Applied Mechanics.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;应用力学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号