首页> 外文期刊>Electrochimica Acta >Four-armed branching and thermally integrated imidazolium-based polymerized ionic liquid as an all-solid-state polymer electrolyte for lithium metal battery
【24h】

Four-armed branching and thermally integrated imidazolium-based polymerized ionic liquid as an all-solid-state polymer electrolyte for lithium metal battery

机译:锂金属电池的全固态聚合物电解质为锂金属电池的四臂支化和热集成咪唑鎓聚合离子液体

获取原文
获取原文并翻译 | 示例
           

摘要

The low ionic conductivity and poor interfacial contact are the main obstacles restricting the practical application of all-solid-state polymer electrolyte in lithium metal batteries. Herein, four-armed and imidazolium cation-tethered polymeric ionic liquid (IMFPIL) is prepared through atom transfer radical polymerization of hydroxyethyl acrylate and subsequent functionalization. The branching architecture of the organic scaffold endows IMFPIL with high thermal stability, low glass transition temperature and loosely packed polymer backbones. The derived more free paths and volumes for Li-ion migration confer much enhanced ion conductivity on the as-prepared all-solid-state polymer electrolyte (IMFSPE), which is 22 times that of the linear counterpart with the same composition. High-temperature thermal integration of IMFSPE into the lithium metal battery effectively eliminates the gaps between the electrolyte and the two electrodes, rendering excellent interfacial contact and stability. The volume variation of the electrodes during the charge-discharge can be effectively mediated. As a result, in sharp contrast to the battery failure of the linear counterpart, such an integrated LiFePO4/IMFSPE/Li all-solid-state battery presents a high discharge capacity of 153 mAh g(-1) at 0.2 C with 99% of coulombic efficiency, and the capacity retention ratio reaches 73% after 150 cycles. Compared with IMLSPE, IMFSPE-2 efficiently weakens the formation of dendritic lithium. The branching design combining with the thermal integration strategy and superior electrochemical features of imidazole make IMFSPE behave as an all-solidstate polymer electrolyte, which paves a new way for developing PILs as ideal SPEs in energy storage device. (C) 2019 Elsevier Ltd. All rights reserved.
机译:低的离子传导性和不良的界面接触是制约全固体型高分子电解质的锂金属电池的实际应用的主要障碍。这里,四臂和咪唑鎓阳离子拴聚合离子液体(IMFPIL)通过丙烯酸羟乙酯和随后的官能化的原子转移自由基聚合制备。有机支架的支化结构赋予IMFPIL具有高的热稳定性,低的玻璃化转变温度和松散堆积的聚合物骨架。所导出的多个自由路径和卷锂离子迁移胙增强了很多离子传导性所制备的全固体型高分子电解质(IMFSPE),这是使用相同的组合物中的直链对应物的22倍。高温热整合IMFSPE的入锂金属电池有效地消除了电解质和两个电极,呈现优异的界面接触和稳定性之间的间隙。充放电时的电极的体积变化可以被有效地介导的。其结果是,在形成鲜明对比的线性对应物的电池失效,这样的集成的LiFePO 4 / IMFSPE /锂的全固态电池呈现在0.2C下的153毫安克(-1)的高放电容量99%库仑效率和容量维持率达到150次循环后73%。与IMLSPE相比,IMFSPE-2有效地削弱树枝状锂的形成。支化设计与热集成策略和咪唑化妆IMFSPE的行为的优异的电化学特性作为一种全固态高分子电解质,其铺平了显影的Pils作为能量存储装置的理想的SPE一种新的方式相结合。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号