首页> 外文学位 >Multi-ionic lithium salts for use in solid polymer electrolytes for lithium batteries.
【24h】

Multi-ionic lithium salts for use in solid polymer electrolytes for lithium batteries.

机译:用于锂电池的固体聚合物电解质的多离子锂盐。

获取原文
获取原文并翻译 | 示例

摘要

Commercial lithium ion batteries use liquid electrolytes because of their high ionic conductivity (>10-3 S/cm) over a broad range of temperatures, high dielectric constant, and good electrochemical stability with the electrodes (mainly the cathode cathode). The disadvantages of their use in lithium ion batteries are that they react violently with lithium metal, have special packing needs, and have low lithium ion transference numbers (tLi+ = 0.2-0.3). These limitations prevent them from being used in high energy and power applications such as in hybrid electric vehicles (HEVs), plug in electric vehicles (EVs) and energy storage on the grid. Solid polymer electrolytes (SPEs) will be good choice for replacing liquid electrolytes in lithium/lithium ion batteries because of their increased safety and ease of processability. However, SPEs suffer from RT low ionic conductivity and transference numbers.;There have been many approaches to increase the ionic conductivity in solid polymer electrolytes. These have focused on decreasing the crystallinity in the most studied polymer electrolyte, polyethylene oxide (PEO), on finding methods to promote directed ion transport, and on the development of single ion conductors, where the anions are immobile and only the Li+ ions migrate (i.e. tLi+ = 1). But these attempts have not yet achieved the goal of replacing liquid electrolytes with solid polymer electrolytes in lithium ion batteries.;In order to increase ionic conductivity and lithium ion transference numbers in solid polymer electrolytes, I have focused on the development of multi-ionic lithium salts. These salts have very large anions, and thus are expected to have low tanion- and high tLi + transference numbers. In order to make the anions dissociative, structures similar to those formed for mono-ionic salts, e.g. LiBF4 and lithium imides have been synthesized. Some of the multi-ionic salts have Janus-like structures and therefore can self-assemble in polar media. Further, it is possible that these salts may not form non-conductive ion pairs and less conductive ion triplets.;First, we have prepared nanocomposite electrolytes from mixtures of two polyoctahedral silsesquioxanes (POSS) nanomaterials, each with a SiO 1.5 core and eight side groups. POSS-PEG8 has eight polyethylene glycol side chains that have low glass transition (Tg) and melt (T m) temperatures and POSS-phenyl7(BF3Li)3 is a Janus-like POSS with hydrophobic phenyl groups and -Si-O-BF 3Li ionic groups clustered on one side of the SiO1.5 cube. The electron-withdrawing POSS cage and BF3 groups enable easy dissociation of the Li+. In the presence of polar POSS-PEG8, the hydrophobic phenyl rings of POSS-phenyl7(BF3Li)3 aggregate and crystallize, forming a biphasic morphology, in which the phenyl rings form the structural phase and the POSS-PEG8 forms the conductive phase. The -Si-O-BF3- Li+ groups of POSS-phenyl7(BF3Li)3 are oriented towards the polar POSS-PEG8 phase and dissociate so that the Li + cations are solvated by the POSS-PEG8. The nonvolatile nanocomposite electrolytes are viscous liquids that do not flow under their own weight. POSS-PEG8/POSS-phenyl7(BF3Li) 3 at O/Li = 16/1 has a conductivity, sigma = 2.5 x 10-4 S/cm at 30°C, 17 x greater than POSS-PEG8/LiBF4, and a low activation energy (Ea ∼ 3-4 kJ/mol); sigma = 1.6 x 10 -3 S/cm at 90°C and 1.5 x 10-5 S/cm at 10°C. The lithium ion transference number was tLi+ = 0.50 +/- 0.01, due to reduced mobility of the large, bulky anion and the system exhibited low interfacial resistance that stabilized after 3 days (both at 80°C).;Secondly, solid polymer electrolytes have been prepared from the same salt, POSS-phenyl7(BF3Li)3 and polyethylene oxide (PEO). These exhibit high ambient temperature conductivity, 4 x 10 -4 S/cm, and transference number, tLi+ = 0.6. A two-phase morphology is proposed in which the hydrophobic phenyl groups cluster and crystallize, and the three -BF3- form an anionic pocket, with the Li+ ions solvated by the PEO phase. The high ionic conductivity results from interfacial migration of Li+ ions loosely bonded to three -BF3- anions and the ether oxygens of PEO. Physical crosslinks formed between PEO/Li+ chains and the POSS clusters account for the solid structure of the amorphous PEO matrix. The solid polymer electrolyte has an electrochemical stability window of 4.6 V and excellent interfacial stability with lithium metal.;In order to further enhance the ionic conductivity of solid polymer electrolytes, we have made two improvements. First, we have used so called half cube structures, T4-POSS, that contain 4 phenyl groups on one side of a Si-O- ring, and 4 ionic groups on the other side, and so are true Janus structures. They contain a 4/4 ratio of phenyl/ionic groups, unlike the previous structures that contain 7 phenyl groups/3 ionic groups. At the same O/Li ratio, the ionic conductivity of [PhOSi(OLi)]4 with POSS-PEG8 is higher than POSS-phenyl 7Li3 because of more Li+ dissociation in the former case. Second, we have increased the dissociation of the lithium salts by replacing the Si-O-BF3Li groups with Si-(C3H4NLiSO 2CF3)4. Both T4-POSS-(C3H4NLiSO 2CF3)4 and POSS-(C3H4NLiSO 2CF3)8 have been synthesized and characterized, with some preliminary conductivity data obtained.
机译:商用锂离子电池之所以使用液体电解质,是因为它们在很宽的温度范围内具有高离子电导率(> 10-3 S / cm),高介电常数以及与电极(主要是阴极阴极)的良好电化学稳定性。它们在锂离子电池中使用的缺点是,它们会与锂金属剧烈反应,具有特殊的包装需求,并且锂离子转移数低(tLi + = 0.2-0.3)。这些限制使它们无法用于高能量和高功率应用,例如混合动力电动汽车(HEV),插电式电动汽车(EV)和电网储能。固态聚合物电解质(SPE)可以替代锂/锂离子电池中的液态电解质,因为它们具有更高的安全性和易加工性,因此将是一种不错的选择。但是,SPE的RT离子传导率和迁移率较低。;已经有很多方法可以提高固体聚合物电解质中的离子传导率。这些研究的重点是降低研究最多的聚合物电解质聚环氧乙烷(PEO)的结晶度,寻找促进定向离子迁移的方法以及开发单一离子导体的方法,其中阴离子是固定的,只有Li +离子迁移(即tLi + = 1)。但是这些尝试尚未达到用锂离子电池中的固体聚合物电解质代替液体电解质的目的。;为了增加固体聚合物电解质中的离子电导率和锂离子转移数,我一直致力于开发多离子锂电池。盐。这些盐具有非常大的阴离子,因此预期具有低的tanion-和高的tLi +转移数。为了使阴离子解离,结构类似于单离子盐所形成的结构,例如。已经合成了LiBF 4和酰亚胺化的锂。一些多离子盐具有类似Janus的结构,因此可以在极性介质中自组装。此外,这些盐可能不会形成非导电离子对和导电性更低的离子三重态。首先,我们从两种聚八面体倍半硅氧烷(POSS)纳米材料的混合物制备了纳米复合电解质,每种材料均具有SiO 1.5核和八个侧面组。 POSS-PEG8具有八个聚乙二醇侧链,它们的玻璃化转变温度(Tg)和熔体温度(T m)低,并且POSS-phenyl7(BF3Li)3是具有疏水性苯基和-Si-O-BF 3Li的类似Janus的POSS。离子基团聚集在SiO1.5立方体的一侧。吸电子的POSS笼和BF3基使Li +易于解离。在极性POSS-PEG8的存在下,POSS-苯基7(BF3Li)3的疏水性苯环聚集并结晶,形成两相形态,其中苯环形成结构相,而POSS-PEG8形成导电相。 POSS-苯基7(BF3Li)3的-Si-O-BF3- Li +基团朝向极性POSS-PEG8相定向并解离,因此Li +阳离子被POSS-PEG8溶剂化。非挥发性纳米复合电解质是粘性液体,不会在其自身重量下流动。 O / Li = 16/1时的POSS-PEG8 / POSS-phenyl7(BF3Li)3具有导电性,在30°C下的sigma = 2.5 x 10-4 S / cm,比POSS-PEG8 / LiBF4大17倍,并且低活化能(Ea〜3-4 kJ / mol); sigma =在90°C下为1.6 x 10 -3 S / cm,在10°C下为1.5 x 10-5 S / cm。锂离子的转移数为tLi + = 0.50 +/- 0.01,这是由于大而笨重的阴离子的迁移率降低,并且该系统显示出低的界面电阻,该电阻在3天后均保持稳定(均为80°C)。由相同的盐POSS-phenyl7(BF3Li)3和聚环氧乙烷(PEO)制备。它们表现出高的环境温度电导率,为4 x 10 -4 S / cm,转移数为tLi + = 0.6。提出了一种两相形态,其中疏水性苯基团簇并结晶,并且三个-BF3-形成一个阴离子袋,而Li +离子被PEO相溶剂化。高离子电导率归因于与三个-BF3-阴离子松散结合的Li +离子和PEO的醚氧的界面迁移。 PEO / Li +链与POSS簇之间形成的物理交联是非晶PEO基质的固体结构。固体聚合物电解质的电化学稳定性窗口为4.6 V,与锂金属的界面稳定性极佳。;为了进一步提高固体聚合物电解质的离子电导率,我们进行了两项改进。首先,我们使用了所谓的半立方体结构T4-POSS,它在Si-O-环的一侧包含4个苯基,在另一侧包含4个离子基团,因此是真正的Janus结构。它们含有4/4比率的苯基/离子基团,这不同于先前的含有7个苯基/ 3个离子基团的结构。在相同的O / Li比下,由于在前一种情况下Li +的解离更多,[PhOSi(OLi)] 4与POSS-PEG8的离子电导率高于POSS-苯基7Li3。第二,我们通过用Si-(C3H4NLiSO2CF3)4取代Si-O-BF3Li基团来增加锂盐的离解。合成并表征了T4-POSS-(C3H4NLiSO 2CF3)4和POSS-(C3H4NLiSO 2CF3)8,并获得了一些初步的电导率数据。

著录项

  • 作者

    Chinnam, Parameswara Rao.;

  • 作者单位

    Temple University.;

  • 授予单位 Temple University.;
  • 学科 Polymer chemistry.;Chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 329 p.
  • 总页数 329
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号