...
首页> 外文期刊>Electrophoresis: The Official Journal of the International Electrophoresis Society >On hybrid electroosmotic kinetics for field‐effect‐reconfigurable nanoparticle trapping in a four‐terminal spiral microelectrode array
【24h】

On hybrid electroosmotic kinetics for field‐effect‐reconfigurable nanoparticle trapping in a four‐terminal spiral microelectrode array

机译:在四端螺旋微电极阵列中捕获场效应可重构纳米粒子捕获的混合电渗动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Induced‐charge electroosmosis (ICEO) has attracted tremendous popularity for driving fluid motion from the microfluidic community since the last decade, while less attention has been paid to ICEO‐based nanoparticle manipulation. We propose herein a unique concept of hybrid electroosmotic kinetics (HEK) in terms of bi‐phase ICEO (BICEO) actuated in a four‐terminal spiral electrode array, for effective electrokinetic enrichment of fluorescent polystyrene nanoparticles on ideally polarizable metal strips. First, by alternating the applied AC voltage waves between consecutive discrete terminals, the flow stagnation lines where the sample nanoparticles aggregate can be switched in time between two different distribution modes. Second, we innovatively introduce the idea of AC field‐effect flow control on BICEO; by altering the combination of gating voltage sequence, not only the number of circulative particle trapping lines is doubled, but the collecting locations can be flexibly reconfigured as well. Third, hydrodynamic streaming of DC‐biased BICEO is tested in our device design, wherein the global linear electroosmosis dominates BICEO contributed from both AC and DC components, resulting in a reduction of particle enrichment area, while with a sharp increase in sample transport speed inside the bulk phase. The flow field associated with HEK is predicted using a linear asymptotic analysis under Debye–Huckel limit, with the simulation results in qualitative agreement with in‐lab observations of nanoparticle trapping by exploiting a series of improved ICEO techniques. This work provides an affordable and field‐deployable platform for real‐time nanoparticle trapping in the context of dilute electrolyte.
机译:摘要感应电荷电渗(ICEO)已经吸引了,因为在过去十年从微社区驱动流体运动广受欢迎,而较少关注已经支付给基于ICEO的纳米粒子操纵。我们在本文中提出四端子螺旋电极阵列中致动时,荧光聚苯乙烯纳米粒子对理想极化的金属条有效电动富集双相ICEO(BICEO)来混合电渗动力学(HEK)的一个独特的概念。首先,通过交替连续离散的端子之间所施加的交流电压波,其中,所述纳米颗粒样品的聚集流动停滞线可在两个不同的时间分布模式之间切换。其次,我们创新性地引入上BICEO AC场效应流量控制的思想;通过改变选通电压序列的组合,不仅可循环的粒子捕获线的数量加倍,但是收集位置可以灵活地重新配置为好。直流偏置BICEO的第三,水动力流在我们的装置的设计,其中所述全局线性电渗占优势BICEO从AC和DC分量作出了贡献,从而减少颗粒富集区的被测试时,在与在检测体搬送速度内的急剧增加体相。与HEK相关联的流场被预测使用下德拜 - 休克尔极限的线性渐近分析,与模拟结果在定性协议与实验室纳米颗粒的观察捕集通过利用一系列改进ICEO技术。这项工作提供了稀电解质的情况下实时捕获纳米粒子的实惠和现场部署的平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号