...
首页> 外文期刊>Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics >Unveiling the Intercalation Mechanism in Fe-2(MoO4)(3) as an Electrode Material for Na-Ion Batteries by Structural Determination
【24h】

Unveiling the Intercalation Mechanism in Fe-2(MoO4)(3) as an Electrode Material for Na-Ion Batteries by Structural Determination

机译:通过结构测定将Fe-2(Moo4)(3)中的嵌入机制揭示为Na离子电池的电极材料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Monoclinic Fe-2(MoO4)(3 )(FMO) shows distinct structural and electrochemical differences in the intercalation mechanism, depending on the guest ion.(1,2) FMO undergoes a single-phase reaction in a Na-ion cell, but a two-phase reaction in a Li-ion cell. Attempts to understand the difference in the mechanisms have been hindered by a lack of structural information on the fully sodiated phase Na2Fe2(MoO4)(3 ) due to its structural complexity and the unavailability of a single crystal. In this work, we have solved and refined the crystal structure of Na2Fe2(MoO4)(3 ) for the first time, using the technique of ab initio structure determination from powder diffraction data. Along with electrochemical and structural characterization, 3D bond valence sum difference map calculations enabled us to ascertain the decisive factors that determine such differences, in terms of the interatomic distance and coordination environment of a guest ion. In the case of Na insertion, only a slight expansion of the structure makes the cavity sites of FMO suitable for Na ions, with adequate distances and coordination with surrounding oxygen atoms, resulting in a solid-solution-type single-phase reaction. In the case of Li insertion, the cavity sites are so large for a Li ion that a significant structural change involving tilting of the FeO6 and MoO4 polyhedra is required to accommodate the Li-ion in a suitable local environment, which does not allow a continuous structural change but results in a two-phase reaction.
机译:单斜替替锰Fe-2(MOO4)(3)(FMO)显示了嵌入机制的不同结构和电化学差异,这取决于客体离子。(1,2)FMO在Na离子细胞中进行单相反应,但是锂离子电池中的两相反应。由于其结构复杂性和单晶的不可用性,通过对完全加入的相Na 2 Fe 2(MOO4)(3)的结构信息缺乏结构信息,试图了解机制的差异。在这项工作中,使用来自粉末衍射数据的AB Initio结构测定的技术,首次解决并精制了Na2Fe2(Moo4)(3)的晶体结构。随着电化学和结构表征,3D键合价和差异图计算使我们能够确定决定差异的决定性因素,这些因素在客座离子的环形距离和协调环境方面确定了这种差异。在Na插入的情况下,该结构的轻微膨胀使得适合于Na离子的FMO的腔位点,具有足够的距离和与周围氧原子的配位,导致固溶式单相反应。在Li插入的情况下,腔位点对于Li离子非常大,即需要涉及倾斜FeO6和Moo4多面体的显着结构变化来容纳在合适的局部环境中的锂离子,这不允许连续结构变化,但导致两相反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号