...
首页> 外文期刊>材料とプロセス: 日本鉄鋼協会講演論文集 >Characterization of microscopic strain and stress in polycrystalline material using white X-ray microbeam diffraction(T007_1)
【24h】

Characterization of microscopic strain and stress in polycrystalline material using white X-ray microbeam diffraction(T007_1)

机译:用白色X射线微束衍射表征多晶材料中的微观应变和应力(T007_1)

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

White X-ray microbeam diffraction has emerged as a powerful tool for the study of internal stress andelastic strain variations within a single grain of polycrystalline materials. In simple terms, this analysistechnique uses microstructural information obtained mainly from Laue diffraction patterns and energyprofile of the comprising Laue spots. They are obtained by irradiating X-ray microbeam onto a localsampling volume and detecting resulting diffracted beam in transmission geometry with a flat paneldetector and solid state detector. Above mentioned parameters are sensitive to local deformation statesof sampling volume. For example, Laue spots reveal some shift, streak, or split after deformation due tolattice rotation and formation of subgrains. Critical in this analysis is the detection and use of clear Lauespots; accurate measurements could be achieved provided that clearly indexed high-intensity Lauespots are used. In the case of polycrystalline shape memory and superelastic materials, accuratestress/stain measurements may be more challenging because of involved complex deformationmechanisms, which are considered to be important information on the microscopic evolution ofstress/strain. The underlining deformation mechanisms in these types of materials are dislocation slipand martensitic transformation. Stress/strain in these polycrystalline materials are expected to be veryinhomogeneous because evolution behavior of martensitic transformation strongly depends oncrystallographic orientation of grains, and newly formed martensite phase is expected to affectstress/strain states of surrounding matrix phase. Moreover, interactions between neighboring grainscould additionally affect local stress/strain distributions within a grain, which makes the analysis morecomplicated. The orientation analysis method developed by JASRI at SPring-8, Japan, seems to beworthy of attention, which is, for example, found to be effective in visualizing grain images1). Thistechnique is capable of simultaneous strain measurement under load conditions, and thus providesinformation on deformation mechanism and internal strain variation in polycrystalline materials. Morerecently, a technique also allowing the analysis of principal stress has been developed. The purpose ofthis study is to analyze the stress/strain evolution in a superelastic Cu-Al-Mn alloy using thesetechniques with white X-ray micro-beam diffraction. We have performed in situ observation onmicrostructure and stress/strain evolution in many grains having different orientations during tensileloading and unloading. Present article briefly shows the analysis technique used for the stress/strainmeasurement and the obtained results are discussed mainly taking into account the effects ofmartensitic transformation.
机译:白色X射线微束衍射已成为研究单晶多晶材料内的内部应力和弹性应变变化的有力工具。简而言之,该分析技术使用的微结构信息主要是从劳厄衍射图和组成的劳厄点的能谱获得的。它们是通过将X射线微光束照射到局部采样体积上并使用平板探测器和固态探测器检测透射几何结构中产生的衍射光束而获得的。上述参数对采样体积的局部变形状态敏感。例如,由于晶格旋转和亚晶粒的形成,Laue点在变形后显示出一些位移,条纹或分裂。该分析的关键是检测和使用透明的Lauespots。只要使用索引清晰的高强度Lauespot,就可以实现准确的测量。在多晶形状记忆和超弹性材料的情况下,由于涉及复杂的变形机制,精确的应力/污点测量可能更具挑战性,这被认为是有关应力/应变的微观演变的重要信息。在这类材料中,最重要的变形机制是位错滑移和马氏体相变。这些多晶材料中的应力/应变被认为是非常不均匀的,因为马氏体相变的演化行为强烈取决于晶粒的晶体学取向,并且新形成的马氏体相预计会影响周围基体相的应力/应变状态。此外,相邻晶粒之间的相互作用还可能影响晶粒内的局部应力/应变分布,这使得分析更加复杂。 JASRI在日本SPring-8开发的定向分析方法似乎值得关注,例如,它被发现可以有效地可视化谷物图像1)。该技术能够在负载条件下同时进行应变测量,因此可提供有关多晶材料中变形机理和内部应变变化的信息。最近,已经开发了还允许分析主应力的技术。本研究的目的是使用这些技术和白色X射线微束衍射技术分析超弹性Cu-Al-Mn合金中的应力/应变演化。我们对许多在拉伸和卸载过程中具有不同取向的晶粒进行了微结构和应力/应变演变的原位观察。本文简要介绍了用于应力/应变测量的分析技术,并主要考虑了马氏体相变的影响,讨论了获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号