...
首页> 外文期刊>Journal of Physics. Condensed Matter >Making tracks: electronic excitation roles in forming swift heavy ion tracks
【24h】

Making tracks: electronic excitation roles in forming swift heavy ion tracks

机译:制作轨迹:电子激励在快速形成重离子轨迹中的作用

获取原文
获取原文并翻译 | 示例

摘要

Swift heavy ions cause material modification along their tracks, changes primarily due to their very dense electronic excitation. The available data for threshold stopping powers indicate two main classes of materials. Group I, with threshold stopping powers above about 10 keV nm-1,includes some metals, crystalline semiconductors and a few insulators. Group II, with lower thresholds, comprises many insulators, amorphous materials and high Tc oxide superconductors. We show that the systematic differences in behaviour result from different coupling of the dense excited electrons, holes and excitons to atomic (ionic) motions, and the consequent lattice relaxation. The coupling strength of excitons and charge carriers with the lattice is crucial. For group II, the mechanism appears to be the self-trapped exciton model of Itoh and Stoneham (1998 Nucl. Instrum. Methods Phys. Res. B 146 362): the local structural changes occur roughly when the exciton concentration exceeds the number of lattice sites. In materials of group I, excitons are not self-trapped and structural change requires excitation of a substantial fraction of bonding electrons, which induces spontaneous lattice expansion within a few hundred femtoseconds, as recently observed by laser-induced time-resolved x-ray diffraction of semiconductors. Our analysis addresses a number of experimental results, such as track morphology, the efficiency of track registration and the ratios of the threshold stopping power of various materials.
机译:快速的重离子沿其轨迹引起材料改性,这主要是由于其非常密集的电子激发而引起的。阈值停止功率的可用数据指示两种主要材料。第一组的阈值停止功率高于约10 keV nm-1,包括一些金属,晶体半导体和一些绝缘体。具有较低阈值的第二组包括许多绝缘体,非晶态材料和高Tc氧化物超导体。我们表明行为的系统差异是由致密的激发电子,空穴和激子与原子(离子)运动的不同耦合以及随之而来的晶格弛豫引起的。激子和电荷载体与晶格的耦合强度至关重要。对于第二组,其机制似乎是Itoh和Stoneham的自陷激子模型(1998 Nucl。Instrum。Methods Phys。Res。B 146 362):当激子浓度超过晶格数时,局部结构发生了大致变化网站。在第I组材料中,激子不是自陷的,结构变化需要激发大部分键合电子,这会在几百飞秒内引起自发晶格扩展,最近通过激光诱导的时间分辨X射线衍射观察到半导体。我们的分析涉及许多实验结果,例如磁道形态,磁道配准的效率以及各种材料的阈值停止功率之比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号