...
首页> 外文期刊>Journal of Physics. Condensed Matter >Polyamorphism and liquid-liquid phase transitions: challenges for experiment and theory
【24h】

Polyamorphism and liquid-liquid phase transitions: challenges for experiment and theory

机译:多非晶性和液-液相转变:实验和理论的挑战

获取原文
获取原文并翻译 | 示例
           

摘要

Phase transitions in the liquid state can be related to pressure-driven fluctuations developed in the density (i.e., the inverse of the molar volume; rho = 1/V) or the entropy (S(T)) rather than by gradients in the chemical potential (mu(X), where X is the chemical composition). Experiments and liquid simulation studies now show that such transitions are likely to exist within systems with a wide range of chemical bonding types. The observations permit us to complete the trilogy of expected liquid state responses to changes in P and T as well as mu (X), as is the case among crystalline solids. Large structure - property changes occurring within non-ergodic amorphous solids as a function of P and T are also observed, that are generally termed 'polyamorphism'. The polyamorphic changes can map on to underlying density- or entropy-driven L - L transitions. Studying these phenomena poses challenges to experimental studies and liquid simulations. Experiments must be carried out over a wide P - T range for in situ structure - property determinations, often in a highly metastable regime. It is expected that L - L transitions often occur below the melting line, so that studies encounter competing crystallization phenomena. Simulation studies of liquid state polyamorphism must involve large system sizes, and examine system behaviour at low T into the deeply supercooled regime, with distance and timescales long enough to sample characteristic density/entropy fluctuations. These conditions must be achieved for systems with different bonding environments, that can change abruptly across the polyamorphic transitions. Here we discuss opportunities for future work using simulations combined with neutron and x-ray amorphous scattering techniques, with special reference to the behaviour of two polyamorphic systems: amorphous Si and supercooled Y2O3-Al2O3 liquids.
机译:液态的相变可能与密度引起的压力驱动波动(即摩尔体积的倒数; rho = 1 / V)或熵(S(T))有关,而不是与化学物质中的梯度有关电势(mu(X),其中X是化学成分)。现在的实验和液体模拟研究表明,这种过渡可能存在于具有广泛化学键类型的系统中。观察结果使我们能够完成预期的液态响应P和T以及mu(X)变化的三部曲,就像结晶固体中的情况一样。还观察到大结构-非遍历无定形固体中随P和T发生的性质变化,通常称为“多晶现象”。多态变化可以映射到潜在的密度或熵驱动的L-L跃迁。研究这些现象给实验研究和液体模拟提出了挑战。通常必须在高度亚稳态的条件下,在较宽的P-T范围内进行实验,以进行原位结构-性质测定。可以预期,L-L转变通常发生在熔点以下,因此研究会遇到竞争性结晶现象。液态多态性的仿真研究必须涉及较大的系统尺寸,并在低T进入深度过冷状态下检查系统行为,其距离和时间尺度应足以采样特征密度/熵波动。对于具有不同键合环境的系统,必须满足这些条件,这些环境可能会在多态过渡中突然改变。在这里,我们讨论了结合模拟,中子和X射线非晶态散射技术的未来工作机会,并特别提及了两种多非晶体系的行为:非晶硅和过冷的Y2O3-Al2O3液体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号