首页> 外文期刊>Journal of Neurophysiology >The irregular firing properties of thalamic head direction cells mediate turn-specific modulation of the directional tuning curve
【24h】

The irregular firing properties of thalamic head direction cells mediate turn-specific modulation of the directional tuning curve

机译:丘脑头部方向细胞的不规则发射特性介导方向调谐曲线的转弯特定调制

获取原文
获取原文并翻译 | 示例
           

摘要

Head direction cells encode an animal’s heading in the horizontal plane. However, it is not clear why the directionality of a cell’s mean firing rate differs for clockwise, compared with counterclockwise, head turns (this difference is known as the “separation angle”) in anterior thalamus. Here we investigated in freely behaving rats whether intrinsic neuronal firing properties are linked to this phenomenon. We found a positive correlation between the separation angle and the spiking variability of thalamic head direction cells. To test whether this link is driven by hyperpolarization-inducing currents, we investigated the effect of thalamic reticular inhibition during high-voltage spindles on directional spiking. While the selective directional firing of thalamic neurons was preserved, we found no evidence for entrainment of thalamic head direction cells by high-voltage spindle oscillations. We then examined the role of depolarization-inducing currents in the formation of separation angle. Using a single-compartment Hodgkin-Huxley model, we show that modeled neurons fire with higher frequencies during the ascending phase of sinusoidal current injection (mimicking the head direction tuning curve) when simulated with higher high-threshold calcium channel conductance. These findings demonstrate that the turn-specific encoding of directional signal strongly depends on the ability of thalamic neurons to fire irregularly in response to sinusoidal excitatory activation. Another crucial factor for inducing phase lead to sinusoidal current injection was the presence of spike-frequency adaptation current in the modeled neurons. Our data support a model in which intrinsic biophysical properties of thalamic neurons mediate the physiological encoding of directional information.
机译:头部方向单元在水平面上编码动物的头部。但是,尚不清楚为什么细胞的平均发射率的方向性在顺时针方向有所变化,而与逆时针方向相比,前丘脑的头部转弯(这种差异称为“分离角”)。在这里,我们研究了行为自由的大鼠是否固有的神经元放电特性与这种现象有关。我们发现分隔角和丘脑头部方向细胞的尖峰变异性之间呈正相关。为了测试此链接是否由超极化感应电流驱动,我们研究了高压纺锤期间丘脑网状抑制对定向峰值的影响。虽然保留了丘脑神经元的选择性定向发射,但我们没有发现通过高压纺锤体振荡夹带丘脑头部方向细胞的证据。然后,我们检查了去极化感应电流在分离角形成中的作用。使用单隔室的Hodgkin-Huxley模型,我们显示,当以较高的高阈值钙通道电导率进行模拟时,模拟的神经元在正弦电流注入的上升阶段(模拟头部方向调整曲线)以较高的频率发射。这些发现表明方向信号的转弯特异性编码在很大程度上取决于丘脑神经元响应正弦兴奋性激活而不规则激发的能力。导致相位导致正弦电流注入的另一个关键因素是建模神经元中存在尖峰频率适应电流。我们的数据支持一种模型,其中丘脑神经元的固有生物物理特性介导方向信息的生理编码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号